

Audio Hub Codec for Multimedia Phones

DESCRIPTION

The WM8993 is a highly integrated ultra-low power hi-fi CODEC designed for portable devices such as multimedia phones.

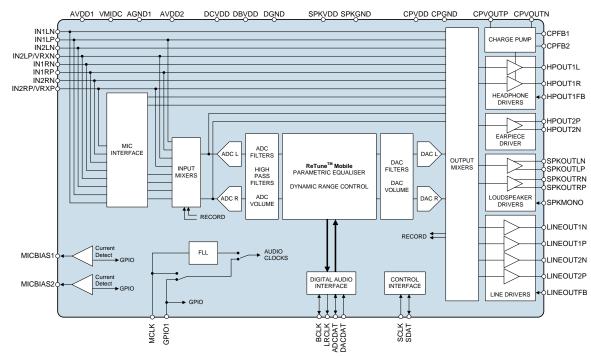
A stereo 1W/channel speaker driver can operate in class D or AB mode. Low leakage and high PSRR across the audio band enable direct battery connection for the speaker supply.

Class W headphone drivers provide a dramatic reduction in playback power and are ground-referenced. Active ground loop noise rejection and DC offset correction help prevent pop noise and ground noise from degrading headphone output quality.

Powerful mixing capability allows the device to support a huge range of architectures and use cases. A highly flexible input configuration supports multiple microphone or line inputs (mono or stereo, single-ended or differential).

Fully differential internal architecture and on-chip RF noise filters ensure a very high degree of noise immunity.

ReTune[™] Mobile parametric EQ with fully programmable coefficients is integrated for optimization of speaker characteristics. Programmable dynamic range control is also available for maximizing loudness, protecting speakers from clipping and preventing premature shutdown due to battery droop.


The WM8993 is supplied in very small and thin 48-ball W-CSP package, ideal for portable systems.

FEATURES

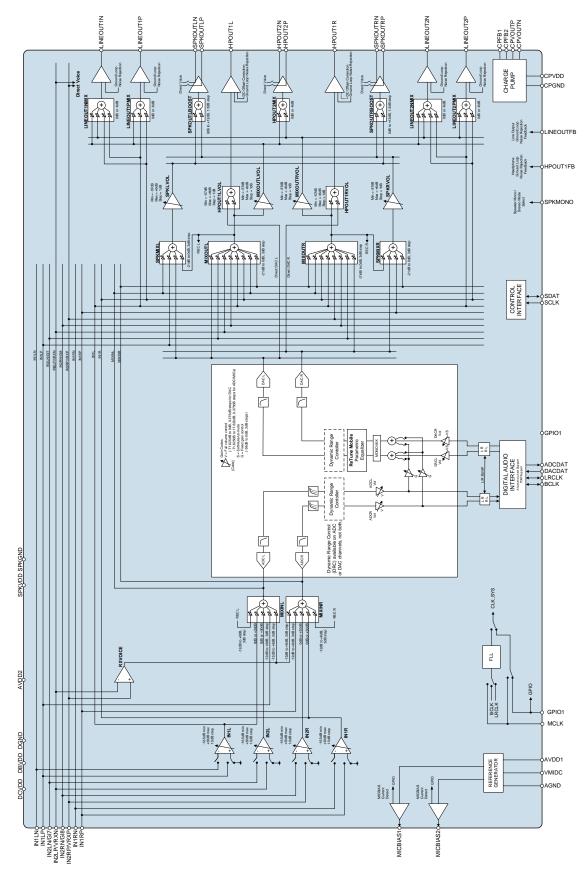
- 100dB SNR during DAC playback ('A' weighted)
- Low power, low noise MIC interface
- Class D or AB stereo speaker driver
 - Stereo1W into 8Ω BTL speaker at <1% THD
 - Mono 2W into 4Ω BTL speaker
- ReTune Mobile parametric equalizer
- Dynamic range controller
- Low power Class W headphone drivers
 - Integrated charge pump and DC offset correction
 - 5mW total power for DAC playback to headphones
- Digital audio interface
 - All standard data formats and 2-channel TDM supported
 - All standard sample rates from 8kHz to 48kHz
- Low power FLL
 - Provides all necessary internal clocks
 - 32kHz to 27MHz input frequency
 - Free-running mode for class D and charge pump
 - 4 highly flexible line outputs (single-ended or differential)
- Dedicated earpiece driver
- "Direct voice" and "Direct DAC" paths to outputs
 - Low noise paths bypass all internal mixers
- Low power consumption
- Active noise reduction
- DC offset correction removes pops and clicks
- Ground loop noise cancellation
- 48-ball W-CSP package (3.65x3.55x0.546mm, 0.5mm pitch)

APPLICATIONS

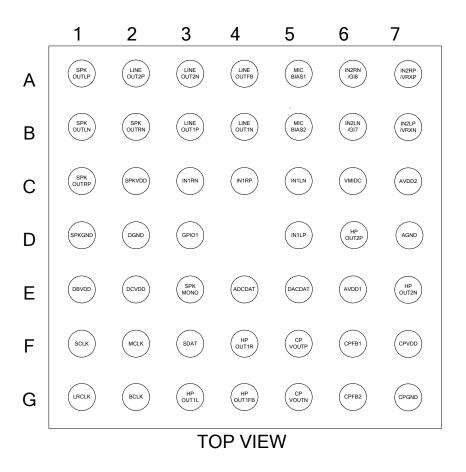
Multimedia phones

TABLE OF CONTENTS

DESCRIPTION	1
FEATURES	1
APPLICATIONS	
TABLE OF CONTENTS	
BLOCK DIAGRAM	
PIN CONFIGURATION	-
	-
	-
PIN DESCRIPTION	
ABSOLUTE MAXIMUM RATINGS	
RECOMMENDED OPERATING CONDITIONS	
THERMAL PERFORMANCE	9
ELECTRICAL CHARACTERISTICS	10
TERMINOLOGY	23
TYPICAL PERFORMANCE	24
POWER CONSUMPTION	
AUDIO SIGNAL PATHS DIAGRAM	25
SIGNAL TIMING REQUIREMENTS	-
MASTER CLOCK	
AUDIO INTERFACE TIMING	-
MASTER MODE	
SLAVE MODE	
TDM MODE	
CONTROL INTERFACE TIMING	30
DEVICE DESCRIPTION	31
INTRODUCTION	31
INPUT SIGNAL PATH	33
MICROPHONE INPUTS	34
MICROPHONE BIAS CONTROL	34
MICROPHONE CURRENT DETECT	35
LINE AND VOICE CODEC INPUTS	35
INPUT PGA ENABLE	
INPUT PGA CONFIGURATION	
INPUT MIXER CONFIGURATION AND VOLUME CONTROL	
ADC DIGITAL CONVERTER (ADC)	
HIGH PASS FILTER	
DIGITAL MIXING	
DIGITAL MIXING PATHS	
DAC INTERFACE VOLUME BOOST	
DIGITAL SIDETONE	
DYNAMIC RANGE CONTROL (DRC)	
COMPRESSION/LIMITING CAPABILITIES	
GAIN LIMITS	
DYNAMIC CHARACTERISTICS	-
ANTI-CLIP CONTROL	
QUICK RELEASE CONTROL	53
GAIN SMOOTHING INITIALISATION	53


RETUNE MOBILE PARAMETRIC EQUALIZER (EQ)	
DEFAULT MODE (5-BAND PARAMETRIC EQ)	
RETUNE MOBILE MODE	
EQ FILTER CHARACTERISTICS	
DIGITAL TO ANALOGUE CONVERTER (DAC)	
DAC DIGITAL VOLUME CONTROL	
DAC SOFT MUTE AND SOFT UN-MUTE	
DAC MONO MIX	
DAC DE-EMPHASIS	
DAC SLOPING STOPBAND FILTER	
OUTPUT SIGNAL PATH	
OUTPUT SIGNAL PATHS ENABLE	
HEADPHONE SIGNAL PATHS ENABLE	
OUTPUT MIXER CONTROL	
SPEAKER MIXER CONTROL	
OUTPUT SIGNAL PATH VOLUME CONTROL	
SPEAKER BOOST MIXER	
CHARGE PUMP	
DC SERVO	
DC SERVO ENABLE AND START-UP	
DC SERVO ACTIVE MODES	
DC SERVO READBACK	
ANALOGUE OUTPUTS	
SPEAKER OUTPUT CONFIGURATIONS	87
HEADPHONE OUTPUT CONFIGURATIONS	90
EARPIECE DRIVER OUTPUT CONFIGURATIONS	91
LINE OUTPUT CONFIGURATIONS	
GENERAL PURPOSE INPUT/OUTPUT	
GPIO1 CONTROL	
BUTTON DETECT	
ACCESSORY DETECTION	
CLOCK OUTPUT	
FLL LOCK STATUS OUTPUT	
TEMPERATURE SENSOR OUTPUT	
CONTROL WRITE SEQUENCER STATUS	
LOGIC '1' AND LOGIC '0' OUTPUT	
INTERRUPTS	
GPIO SUMMARY	
DIGITAL AUDIO INTERFACE	105
MASTER AND SLAVE MODE OPERATION	
OPERATION WITH TDM	
BCLK FREQUENCY	
AUDIO DATA FORMATS (NORMAL MODE)	
AUDIO DATA FORMATS (TDM MODE) DIGITAL AUDIO INTERFACE CONTROL	
AUDIO INTERFACE OUTPUT TRI-STATE	
BCLK AND LRCLK CONTROL	
COMPANDING	
LOOPBACK	-
DIGITAL PULL-UP AND PULL-DOWN	
CLOCKING AND SAMPLE RATES	
CLK_SYS CONTROL	
AUTOMATIC CLOCKING CONFIGURATION	

ADC / DAC CLOCK CONTROL	121
256K, DC SERVO, CLASS D CLOCK CONTROL	122
OPCLK CONTROL	
TOCLK CONTROL	
BCLK AND LRCLK CONTROL	
FREQUENCY LOCKED LOOP (FLL)	
FREE-RUNNING FLL CLOCK	
EXAMPLE FLL CALCULATION	
EXAMPLE FLL SETTINGS	
CONTROL WRITE SEQUENCER	
PROGRAMMING A SEQUENCE	
POP SUPPRESSION CONTROL	
DISABLED LINE OUTPUT CONTROL	
LINE OUTPUT DISCHARGE CONTROL	
VMID REFERENCE DISCHARGE CONTROL	
INPUT VMID CLAMPS	
REFERENCE VOLTAGES AND MASTER BIAS	
POWER MANAGEMENT	
POWER ON RESET	
QUICK START-UP AND SHUTDOWN	
SOFTWARE RESET AND DEVICE ID	
THERMAL SHUTDOWN	
REGISTER MAP	
REGISTER BITS BY ADDRESS	
DIGITAL FILTER CHARACTERISTICS	
ADC FILTER RESPONSES	
ADC HIGH PASS FILTER RESPONSES	
DAC FILTER RESPONSES	
DE-EMPHASIS FILTER RESPONSES	
APPLICATIONS INFORMATION	
RECOMMENDED EXTERNAL COMPONENTS	
AUDIO INPUT PATHS	
HEADPHONE OUTPUT PATH	
EARPIECE DRIVER OUTPUT PATH	
LINE OUTPUT PATHS	
POWER SUPPLY DECOUPLING	
CHARGE PUMP COMPONENTS	213
MICROPHONE BIAS CIRCUIT	213
CLASS D SPEAKER CONNECTIONS	214
RECOMMENDED EXTERNAL COMPONENTS DIAGRAM	
PCB LAYOUT CONSIDERATIONS	
CLASS D LOUDSPEAKER CONNECTION	
PACKAGE DIMENSIONS	
IMPORTANT NOTICE	220
REVISION HISTORY	221



BLOCK DIAGRAM

PIN CONFIGURATION

ORDERING INFORMATION

ORDER CODE	TEMPERATURE RANGE	PACKAGE	MOISTURE SENSITIVITY LEVEL	PEAK SOLDERING TEMPERATURE
WM8993ECS/RV	-40°C to +85°C	48-ball W-CSP (Pb-free, Tape and reel)	MSL1	260°C

Note:

Reel quantity = 3500

PIN DESCRIPTION

PIN NO	NAME	TYPE	DESCRIPTION
A5	MICBIAS1	Analogue Output	Microphone bias
B5	MICBIAS2	Analogue Output	Microphone bias
C5	IN1LN	Analogue Input	Left channel single-ended MIC input /
			Left channel negative differential MIC input
D5	IN1LP	Analogue Input	Left channel line input /
			Left channel positive differential MIC input
B6	IN2LN/GI7	Analogue Input /	Left channel line input /
		Digital Input	Left channel negative differential MIC input /

PIN NO	NAME	ТҮРЕ	DESCRIPTION
B7	IN2LP/VRXN	Analogue Input	Left channel line input /
		0	Left channel positive differential MIC input /
			Mono differential negative input (RXVOICE -)
C3	IN1RN	Analogue Input	Right channel single-ended MIC input /
			Right channel negative differential MIC input
C4	IN1RP	Analogue Input	Right channel line input /
			Right channel positive differential MIC input
A6	IN2RN/GI8	Analogue Input /	Right channel line input /
		Digital Input	Right channel negative differential MIC input /
A7	IN2RP/VRXP	Analogue Input	Left channel line input /
			Left channel positive differential MIC input /
			Mono differential positive input (RXVOICE +)
E2	DCVDD	Supply	Digital core supply
D2	DGND	Supply	Digital ground (Return path for both DCVDD and DBVDD)
E1	DBVDD	Supply	Digital buffer (I/O) supply
E6	AVDD1	Supply	Analogue core supply
C7	AVDD2	Supply	Analogue class D and FLL supply
D7	AGND	Supply	Analogue ground (Return path for AVDD1)
F7	CPVDD	Supply	Charge pump supply
G7	CPGND	Supply	Charge pump ground (Return path for CPVDD)
C2	SPKVDD	Supply	Supply for speaker driver
D1	SPKGND	Supply	Ground for speaker driver (Return path from SPKVDD)
F5	CPVOUTP	Analogue Output	Charge pump positive supply decoupling pin (HPOUT1L, HPOUT1R)
G5	CPVOUTN	Analogue Output	Charge pump negative supply decoupling pin (HPOUT1L, HPOUT1R)
F6	CPFB1	Analogue Output	Charge pump flyback capacitor pin
G6	CPFB2	Analogue Output	Charge pump flyback capacitor pin
F2	MCLK	Digital Input	Master clock
G2	BCLK	Digital Input / Output	Audio interface bit clock
G1	LRCLK	Digital Input / Output	Audio interface left / right clock
E5	DACDAT	Digital Input	DAC digital audio data
E4	ADCDAT	Digital Output	ADC digital audio data
F1	SCLK	Digital Input	Control interface clock input
F3	SDAT	Digital Input / Output	Control interface data input and output / 2-wire acknowledge output
A1	SPKOUTLP	Analogue Output	Left speaker positive output
B1	SPKOUTLN	Analogue Output	Left speaker negative output
C1	SPKOUTRP	Analogue Output	Right speaker positive output
B2	SPKOUTRN	Analogue Output	Right speaker negative output
E3	SPKMONO	Digital Input	2W Mono/1W Stereo speaker select
G3	HPOUT1L	Analogue Output	Left headphone output
F4	HPOUT1R	Analogue Output	Right headphone output
G4	HPOUT1FB	Analogue Input	HPOUT1L and HPOUT1R ground loop noise rejection feedback
D6	HPOUT2P	Analogue Output	Earpiece speaker non-inverted output
E7	HPOUT2N	Analogue Output	Earpiece speaker inverted output
B4	LINEOUT1N	Analogue Output	Negative mono line output / Positive left or right line output
B3	LINEOUT1P	Analogue Output	Positive mono line output / Positive left line output
A3	LINEOUT2N	Analogue Output	Negative mono line output / Positive left or right line output
A2	LINEOUT2P	Analogue Output	Positive mono line output / Positive left line output
A4	LINEOUTFB	Analogue Input	Line output ground loop noise rejection feedback
C6	VMIDC	Analogue Output	Midrail voltage decoupling capacitor
D3	GPIO1	Digital Input / Output	GPIO pin

ABSOLUTE MAXIMUM RATINGS

Absolute Maximum Ratings are stress ratings only. Permanent damage to the device may be caused by continuously operating at or beyond these limits. Device functional operating limits and guaranteed performance specifications are given under Electrical Characteristics at the test conditions specified.

ESD Sensitive Device. This device is manufactured on a CMOS process. It is therefore generically susceptible to damage from excessive static voltages. Proper ESD precautions must be taken during handling and storage of this device.

Cirrus Logic tests its package types according to IPC/JEDEC J-STD-020B for Moisture Sensitivity to determine acceptable storage conditions prior to surface mount assembly. These levels are:

MSL1 = unlimited floor life at <30°C / 85% Relative Humidity. Not normally stored in moisture barrier bag.

MSL2 = out of bag storage for 1 year at <30°C / 60% Relative Humidity. Supplied in moisture barrier bag.

MSL3 = out of bag storage for 168 hours at <30°C / 60% Relative Humidity. Supplied in moisture barrier bag.

The Moisture Sensitivity Level for each package type is specified in Ordering Information.

CONDITION	MIN	MAX
Supply voltages (AVDD1, DBVDD)	-0.3V	+4.5V
Supply voltages (AVDD2, DCVDD)	-0.3V	+2.5V
Supply voltages (CPVDD)	-0.3V	+2.2V
Supply voltages (SPKVDD)	-0.3V	+7.0V
Voltage range digital inputs	DGND -0.3V	DBVDD +0.3V
Voltage range analogue inputs	AGND -0.3V	AVDD1 +0.3V
Operating temperature range, T _A	-40°C	+85°C
Junction temperature, T _{JMAX}	-40°C	+150°C
Storage temperature after soldering	-65°C	+150⁰C

RECOMMENDED OPERATING CONDITIONS

PARAMETER	SYMBOL	MIN	TYP	MAX	UNIT
Digital supply range (Core)	DCVDD	1.08	1.2	2.0	V
Digital supply range (I/O)	DBVDD	1.62	1.8	3.6	V
Analogue supply 1 range	AVDD1	2.4	3.0	3.3	V
Analogue supply 2 range	AVDD2	1.71	1.8	2.0	V
Charge Pump supply range	CPVDD	1.71	1.8	2.0	V
Speaker supply range	SPKVDD	2.7	5.0	5.5	V
Ground	DGND, AGND, CPGND, SPKGND		0		V

Notes

1. Analogue, digital and speaker grounds must always be within 0.3V of each other.

- 2. There is no power sequencing requirement; the supplies may be enabled in any order.
- 3. DCVDD must be less than or equal to AVDD1 and AVDD2.
- 4. DCVDD must be less than or equal to DBVDD.
- 5. AVDD1 must be less than or equal to SPKVDD.

THERMAL PERFORMANCE

Thermal analysis should be performed in the intended application to prevent the WM8993 from exceeding maximum junction temperature. Several contributing factors affect thermal performance most notably the physical properties of the mechanical enclosure, location of the device on the PCB in relation to surrounding components and the number of PCB layers. Connecting the GND balls through thermal vias and into a large ground plane will aid heat extraction.

Three main heat transfer paths exist to surrounding air as illustrated below in Figure 1:

- Package top to air (radiation).
- Package bottom to PCB (radiation).
- Package balls to PCB (conduction).

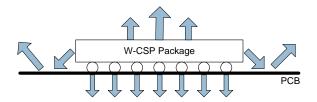


Figure 1 Heat Transfer Paths

The temperature rise T_R is given by $T_R = P_D * \Theta_{JA}$

- P_D is the power dissipated in the device.
- Θ_{JA} is the thermal resistance from the junction of the die to the ambient temperature and is therefore a measure of heat transfer from the die to surrounding air. Θ_{JA} is determined with reference to JEDEC standard JESD51-9.

The junction temperature T_J is given by $T_J = T_A + T_R$, where T_A is the ambient temperature.

PARAMETER	SYMBOL	MIN	TYP	MAX	UNIT
Operating temperature range	T _A	-40		85	°C
Operating junction temperature	TJ	-40		125	°C
Thermal Resistance	θ _{JA}		TBC		°C/W

Notes:

^{1.} Junction temperature is a function of ambient temperature and of the device operating conditions. The ambient temperature limits and junction temperature limits must both be observed.

ELECTRICAL CHARACTERISTICS

Test Conditions

DCVDD = 1.2V, AVDD2 = DBVDD = CPVDD = 1.8V, AVDD1 = 3.0V, SPKVDD = 5V, DGND=AGND=CPGND=SPKGND=0V, $T_A = +25^{\circ}C$, 1kHz sinusoidal signal, fs = 48kHz, PGA gain = 0dB, 24-bit audio data unless otherwise stated.

PARA	METER	TEST COND	DITIONS MIN	TYP	MAX UNIT
Analo	ogue Input Pin Maximum	Signal Levels (IN1LN, IN1LP	P, IN2LN, IN2LP, IN1RN, IN1RP, IN2	2RN, IN2RP)	
A1	Maximum Full-Scale PG Input Signal Level Note 1,2 and 3	A Single-ended PGA input	IN1LN, IN1L, IN2LN, IN2L, IN1RN or IN2RN IN2RN VMID	1. 0	
		Differential PGA input	IN1LN, IN1L, IN2LN, IN2L, IN1RN or IN2RN OdB IN2R IN1R or IN1R or IN1LP, IN1LP, IN2LP, IN1LP, IN1LP, IN1LP, IN2LP, IN1RP or IN2RP	1.	
A2	Maximum Full-Scale Line Input Signal Level Note 1, 2 and 3	e Single-ended Line input to mixers	IN1LP, IN2LN, IN2LP, IN1RP, IN2RN or IN2RP Mixer	1.	
		Differential mono line input on VRXP/VRXN to RXVOICE or Direct Voice paths to speaker outputs or earpiece output	RXVOICE or Direct Voice paths	1.	

Notes:

- 1. This changes in proportion to AVDD1 (AVDD1/3.0)
- 2. When mixing line inputs, input PGA outputs and DAC outputs the total signal must not exceed 1Vrms (0dBV).
- 3. A 1.0Vrms differential signal equates to 0.5Vrms/-6dBV per input.

PAR	AMETER	TEST C	CONDITIONS	MIN	TYP	MAX	UNIT
Analo	ogue Input Pin Impedances	(IN1LN, IN1LP, IN2LN, IN2L	P, IN1RN, IN1RP, IN2RN, IN2RP)				
B1	PGA Input Resistance Differential Mode	PGA Gain = -16.5dB	IN1LN, IN2LN,		52.5		kΩ
	Differential Mode	PGA Gain = 0dB			25.1		kΩ
	Note 4 See "Applications Information" for details of Input resistance at all	PGA Gain = +30dB	RIN + IN1LP, IN1LP, IN2LP, IN1RP or IN2RP		1.3		kΩ
	PGA Gain settings.						
B2	PGA Input Resistance Single-Ended Mode	PGA Gain = -16.5dB	IN1LN, IN2LN, IN1RN or		58.0		kΩ
	Note 4	PGA Gain = 0dB			36.2		kΩ
	Note 4	PGA Gain = +30dB	+ IN1L, IN2L, IN1R or IN2R VMID		2.5		kΩ
	See "Applications Information" for details of Input resistance at all PGA Gain settings.						
B3	Line Input Resistance	IN1LP or IN1RP to INMIXL or INMIXR (-12dB)			56.0		kΩ
	Note 4	IN1LP or IN1RP to INMIXL or INMIXR (0dB)			17.4		kΩ
		IN1LP or IN1RP to INMIXL or INMIXR (+6dB)	IN2LP or IN2RP MIXINL or MIXINR		9.8		kΩ
		IN1LP to SPKMIXL or IN1RP to SPKMIXR (SPKATTN = -12dB)			88.5		kΩ
		IN1LP to SPKMIXL or IN1RP to SPKMIXR (SPKATTN = 0dB)	SPKMIXL or (+)		26.7		kΩ
		IN2LN, IN2RN, IN2LP or IN2RP to MIXOUTL or MIXOUTR (-21dB)	RIN IN2LN, IN2RN, IN2P or IN2PD MIXOUTL or (+)		150.9		kΩ
		IN2LN, IN2RN, IN2LP or IN2RP to MIXOUTL or MIXOUTR (0dB)			18.2		kΩ
		VRXP-VRXN via RXVOICE to MIXINL <u>or</u> MIXINR (Gain = -12dB)	VRXN RXVOICE		47.7		kΩ
		VRXP-VRXN via RXVOICE to MIXINL <u>or</u> MIXINR (Gain = 0dB)			12.0		kΩ
		VRXP-VRXN via RXVOICE to MIXINL or MIXINR			6.0		kΩ
		(Gain = +6dB)					

DCVDD = 1.2V, AVDD2 = DBVDD = CPVDD = 1.8V, AVDD1 = 3.0V, SPKVDD = 5V, DGND=AGND=CPGND=SPKGND=0V, $T_A = +25^{\circ}C$, 1kHz sinusoidal signal, fs = 48kHz, PGA gain = 0dB, 24-bit audio data unless otherwise stated.

PARAMETER	TEST C	CONDITIONS	MIN	TYP	MAX	UNIT
	Direct Voice to Earpiece Driver (Gain = -6dB)			33.3		kΩ
	Direct Voice to Earpiece Driver (Gain = 0dB)	VRXP RIN HPOUT2N		16.7		kΩ
	Direct Voice to Speaker Driver (Gain = 0dB)	Driver (Gain = 0dB) VRXN SPKOUTLP or SPKOUTRP Direct Voice to Speaker Direct Voice to Speaker Direct Voice Path Driver (Gain = +6dB) VRXP SPKOUTN or SPKOUTLN OF SPKOUT		170.0		kΩ
				85.2		kΩ
				60.3		kΩ
	Direct Voice to Speaker Driver (Gain = +12dB)	SPKOUTRN		42.7		kΩ

Note:

4. Input resistance will be seen in parallel with the resistance of other enabled input paths from the same pins

Test Conditions

	PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT
Input	Programmable Gain Amplifiers (PC	GAs) IN1L, IN2L, IN1R and IN2R				
C1	Minimum Programmable Gain			-16.5		dB
C2	Maximum Programmable Gain			30		dB
C3	Programmable Gain Step Size	Guaranteed monotonic		1.5		dB
C4	Mute Attenuation	Inputs disconnected		90		dB
C5	Common Mode Rejection Ratio	Single PGA in differential mode, gain = +30dB		70		dB
	(217Hz input)		60		dB	
		Single PGA in differential mode, gain = -16.5dB		55		dB
Input	Mixers MIXINL and MIXINR					
C6	Minimum Programmable Gain	PGA Outputs to MIXINL and MIXINR		0		dB
C7	Maximum Programmable Gain	PGA Outputs to MIXINL and MIXINR		+30		dB
C8	Programmable Gain Step Size	PGA Outputs to MIXINL and MIXINR		30		dB
C9	Minimum Programmable Gain	Line Inputs and Record path to MIXINL and MIXINR		-12		dB
C10	Maximum Programmable Gain	Line Inputs and Record path to MIXINL and MIXINR		+6		dB
C11	Programmable Gain Step Size	Line Inputs and Record path to MIXINL and MIXINR		3		dB
C12	Minimum Programmable Gain	RXVOICE to MIXINL and MIXINR		-12		dB
C13	Maximum Programmable Gain	RXVOICE to MIXINL and MIXINR		+6		dB
C14	Programmable Gain Step Size	RXVOICE to MIXINL and MIXINR		3		dB
C16	Common Mode Rejection Ratio	RXVOICE to MIXINL or MIXINR, gain = +6dB		60		dB
	(217Hz input)	RXVOICE to MIXINL or MIXINR, gain = 0dB		65		dB
		RXVOICE to MIXINL or MIXINR, gain = -12dB		65		dB

	PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT
Outpu	It Mixers MIXOUTL and MIXOUTR	•	•	•	•	
C17	Minimum Programmable Gain			-21		dB
C18	Maximum Programmable Gain			0		dB
C19	Programmable Gain Step Size			3		dB
C20	Mute attenuation			-67		dB
Speal	ker Mixers SPKMIXL and SPKMIXR			•	•	
C21	Minimum Programmable Gain			-15		dB
C22	Maximum Programmable Gain			0		dB
C23	Programmable Gain Step Size			3		dB
C24	Mute attenuation			-67		dB
	ut Programmable Gain Amplifiers (P PKRVOL	GAs) HPOUT1LVOL, HPOUT1RVOL, MIXOUTLVO	L, MIXOU	TRVOL	, SPKL\	/OL
C25	Minimum Programmable Gain			-57		dB
C26	Maximum Programmable Gain			+6		dB
C27	Programmable Gain Step Size	Guaranteed monotonic		1		dB
C28	Mute attenuation			-69		dB
Line (Output Driver Programmable Gain L	INEOUT1NMIX, LINEOUT1PMIX, LINEOUT2NMIX	and LINE	OUT2PN	/IX	
C29	Minimum Programmable Gain			-6		dB
C30	Maximum Programmable Gain			0		dB
C31	Programmable Gain Step Size			6		dB
Earpi	ece Driver Programmable Gain HPC	UT2MIX				
C33	Minimum Programmable Gain			-6		dB
C34	Maximum Programmable Gain			0		dB
C35	Programmable Gain Step Size			6		dB
C37	Common Mode Rejection Ratio (217Hz input)	Direct Voice path to HPOUT2, gain = 0dB		50		dB
Speal	ker Output Driver Programmable Ga	in SPKOUTLBOOST and SPKOUTRBOOST				
C38	Minimum Programmable Gain			0		dB
C39	Maximum Programmable Gain			+12		dB
C40	Programmable Gain Step Size			1.5		dB
C42	Mute attenuation	Class AB mode		-78		dB
C43	Common Mode Rejection Ratio (217Hz input)	Direct Voice path to SPKOUTL or SPKOUTR, gain = 0dB		50		dB
		Direct Voice path to SPKOUTL or SPKOUTR, gain = +12dB		50		dB

	PARAMETER		TEST CONDITIONS	MIN	TYP	MAX	UNIT					
ADC	Input Path Performance											
D1	Line Inputs to ADC via MI	XINL and MIXINR										
	SNR (A-weighted)				94		dB					
	THD (-1dBFS input)				-83		dB					
	THD+N (-1dBFS input)				-81		dB					
	Crosstalk (L/R)		IN1LP or IN1RP ADC L		-100		dB					
	PSRR (all other supplies 217Hz)	100mVpk-pk	MIXINL or MIXINR		-78		dB					
D2	Record Path (DACs to ADCs via MIXINL and MIXINR)											
	SNR (A-weighted)			83	94		dB					
	THD (-1dBFS input)				-74	-64	dB					
	THD+N (-1dBFS input)				-72	-62	dB					
	Crosstalk (L/R)		ADC L or ADCR MIXINL or MIXINR		-95		dB					
D3	Input PGAs to ADC via MIXINL or MIXINR											
	SNR (A-weighted)			86	95		dB					
	THD (-1dBFS input)				-82	-72	dB					
	THD+N (-1dBFS input)		MIXINR ADCL or		-80	-70	dB					
	Crosstalk (L/R)				-100		dB					
	PSRR (AVDD1 217Hz)	100mVpk-pk	INTEP, INZEP, J INTRP or IN2RP INTR or IN2R (Single-ended or differential mode)		-100		dB					
D4	VRXP-VRXN to one ADC	/ia RXVOICE	•									
	SNR (A-weighted)				95		dB					
	THD (-1dBFS input)				-83		dB					
	THD+N (-1dBFS input)		VRXP + ADCL or ADCR		-81		dB					

	PARAMETER		TEST CONDITIONS	MIN	TYP	MAX	UNIT					
DAC	Output Path Performance											
E1	DAC to Single-Ended Lin	e Output (10kΩ /	50pF)									
	SNR (A-weighted)			84	94		dB					
	THD	0dBFS input	LINEOUT1PMIX, MIXOUTL or LINEOUT2PMIX		-71	-61	dB					
	THD+N	0dBFS input			-70	-60	dB					
	Crosstalk (L/R)		DACC 01 + + + LINEOUTIN,		-75		dB					
	PSRR (all other supplies 217Hz)	100mVpk-pk	MIXOUTLVOL LINEOUT IP, or LINEOUT 2N, MIXOUTRVOL LINEOUT2P		-36		dB					
E2	DAC to Differential Line (Output (10kΩ / 50)	oF)									
	SNR (A-weighted)			87	97		dB					
	THD	0dBFS input	LINEOUT2NMIX UNEOUT1N or Odd LINEOUT2N		-76		dB					
	THD+N	0dBFS input			-75		dB					
	Crosstalk (L/R)				-90		dB					
	PSRR (all other supplies 217Hz)	100mVpk-pk			-51		dB					
E3	Minimum Line Output Resistance	LINEOUT1N, LINEOUT1P, LINEOUT2N, LINEOUT2P		2			kΩ					
E4	Line Output Capacitance	LINEOUT1N,	Direct connection			100	pF					
		LINEOUT1P, LINEOUT2N, LINEOUT2P	Connection via 1kΩ series resistor			2000	pF					
E5	DAC to Headphone on HPOUT1L or HPOUT1R (R_L =32 Ω)											
	SNR (A-weighted)	OSR = 128fs			100		dB					
		OSR = 64fs			97		dB					
	THD (P ₀ =20mW)		HPOUT1L		-79		dB					
	THD+N (Po=20mW)		or HPOUT1R		-77		dB					
	THD (Po=5mW)				-83		dB					
	THD+N (P ₀ =5mW)		HPOUT1LVOL 320hm		-81		dB					
	Crosstalk (L/R)		or HPOUT1RVOL		-95		dB					
	PSRR (all other supplies 217Hz)	100mVpk-pk			-51		dB					
E6	DAC to Headphone on H	POUT1L or HPOU	T1R (R∟=16Ω)									
	SNR (A-weighted)	OSR = 128fs		90	100		dB					
		OSR = 64fs			97		dB					
	THD (P _o =20mW)		HPOUT1L or		-85		dB					
	THD+N (P ₀ =20mW)		HPOUT1R		-83		dB					
	THD (P _o =5mW)				-83	-73	dB					
	THD+N (P ₀ =5mW)		HPOUT1LVOL 160hm		-81	-71	dB					
	Crosstalk (L/R)				-95		dB					
	PSRR (all other supplies 217Hz)	100mVpk-pk			-51		dB					

	PARAMETER		TEST CONDITIONS	MIN	TYP	MAX	UNIT
E7	Minimum Headphone	HPOUT1L or	Normal operation	15			Ω
	Resistance	HPOUT1R	Device survival with load applied indefinitely	1			Ω
E8	Headphone Capacitance	HPOUT1L or HPOUT1R				2	nF
E9	DAC to Earpiece Driver (R∟=16Ω BTL)	•				
	SNR (A-weighted)		MIXOUTLVOI HPOUT2P		97		dB
	THD (P _o =50mW)		or		-69		dB
	THD+N (P _o =50mW)				-67		dB
	PSRR (all other supplies 217Hz)	100mVpk-pk	DACR + + + = 16ohm		-51		dB
	DC Offset at Load		OF MIXOUTR HPOUT2N		5		mV
E10	Earpiece Resistance			15			Ω
E11	Earpiece Capacitance		Direct connection			200	pF
E12	DAC to Speaker Outputs	(R _L =8Ω + 10μΗ ΒΤ	L, Stereo Mode)				
	SNR (A-weighted)			84	94		dB
	THD (P ₀ =0.5W)				-63	-53	dB
	THD+N (P ₀ =0.5W)				-62	-52	dB
	THD (P ₀ =1.0W)	Class D mode SPK Boost=+12dB			-67		dB
	THD+N (P _O =1.0W)	SFR B005(=+120B			-66		dB
	PSRR (all supplies 217Hz)				-43		dB
	Crosstalk (L/R)		SPKOUTLP or SPKOUTRP		-80		dB
	SNR (A-weighted)		SPKLVOL or SPKRVOL 0dB		97		dB
	THD (P ₀ =0.5W)		DACL of + + RLOADE Sohm		-68		dB
	THD+N (P ₀ =0.5W)		SPKMIXL or SPKOUTLBOOST		-65		dB
	THD (P ₀ =1.0W)	Class AB mode	SPKMIXR or SPKOUTRBOOST SPKOUTLN or SPKOUTRN		-70		dB
	THD+N (P ₀ =1.0W)	SPK Boost=+12dB			-68		dB
	PSRR (all supplies 217Hz)]			-43		dB
	Crosstalk (L/R)				-80		dB
	DC Offset at Load	Class AB mode			10		mV
		SPK Boost=0dB					

DCVDD = 1.2V, AVDD2 = DBVDD = CPVDD = 1.8V, AVDD1 = 3.0V, SPKVDD = 5V, DGND=AGND=CPGND=SPKGND=0V, $T_A = +25^{\circ}C$, 1kHz sinusoidal signal, fs = 48kHz, PGA gain = 0dB, 24-bit audio data unless otherwise stated.

PARAMETER **TEST CONDITIONS** MIN TYP MAX UNIT Speaker Output Power ($R_L=8\Omega + 10\mu H BTL$, Stereo Mode) E13 W **Output Power** Class AB SPKVDD=5.0V 1 THD+N ≤ 1% Class D 1 SPKVDD=4.2V Class AB 0.86 W Class D THD+N ≤ 1% 0.87 SPKVDD=3.7V Class AB 0.65 W THD+N ≤ 1% Class D 0.66 E14 Speaker Output Power (R_L=8Ω + 10µH BTL, Mono Mode) Class AB **Output Power** SPKVDD=5.0V 1 W THD+N ≤ 1% Class D 1 SPKVDD=4.2V Class AB 0.99 W THD+N ≤ 1% Class D 0.98 SPKVDD=3.7V Class AB 0.75 W THD+N ≤ 1% Class D 0.75 E15 Speaker Output Power ($R_L=4\Omega + 10\mu H BTL$, Mono Mode) **Output Power** SPKVDD=5.0V Class AB 2 mW THD+N ≤ 1% Class D 2 E16 Speaker Resistance Stereo Mode 8 Ω Mono Mode 4 Ω E17 SPKVDD Leakage SPKVDD=5.0V μΑ 1 Current

	PARAMETER		TEST CONDITIONS	MIN	TYP	MAX	UNIT
Вура	ss Path Performance						
F1	Input PGA to Differential	Line Out (10kΩ /	50pF)				
	SNR (A-weighted)			92	102		dB
	THD (0dB output)		or LINEOUT1N LINEOUT2NMIX or OdB LINEOUT2N		-94	-84	dB
	THD+N (0dB output)				-92	-82	dB
	PSRR (all other supplies 217Hz)	100mVpk-pk	INILP or INILP or INILP OT INILO INIR (Single-ended or Differential) UNEOUT1PMIX or UNEOUT1PMIX UNEOUT2PMIX		-45		dB
F2	VRXP or VRXN to Headph	one via MIXOUT	L or MIXOUTR (R₁=16Ω)				
. –	SNR (A-weighted)				101		dB
	THD ($P_0=20$ mW)		MIXOUTL		-85		dB
	THD+N ($P_0=20$ mW)		or HPOUT1L or MIXOUTR 0dB HPOUT1R		-83		dB
	THD ($P_0=5mW$)				-83		dB
	THD+N ($P_0=5mW$)		VRXN or Rload= VRXP HPOUT1LVOL 16 chm		-81		dB
	PSRR (all other supplies	100mVpk-pk	or HPOUTIRVOL 160hm		-49		dB
	217Hz)	τοοπινρκ-ρκ			-49		uв
F3	Input PGA to Headphone	via MIXOUTL or I	MIXOUTR (R _L =16Ω)				
F	SNR (A-weighted)				100		dB
	THD (P _o =20mW)				-85		dB
-	THD+N (P _o =20mW)		MIXOUTL IN1LN or 0dB UX0UTTD HPOUT1L or		-83		dB
	THD (P _o =5mW)				-83		dB
	THD+N (P _o =5mW)		HPOLITILYOL Rioad=		-81		dB
	PSRR (all other supplies 217Hz)	100mVpk-pk	INTLP or INTL or INTR HPOUT1LVOL 160hm INTRP INTL or INTR Or 160hm (Single-ended or 160hm or Differential)		-49		dB
	Crosstalk (L/R)				-95		dB
F4	Line Input to Headphone	via MIXOUTL and	h MIXOUTR (RL=16Ω)				
	SNR (A-weighted)			92	100		dB
	THD (Po=20mW)		MIXOUTL or HPOUT1L or		-85	-75	dB
	THD+N (Po=20mW)		MIXOUTR 0dB HPOUTIR		-83	-73	dB
	THD (Po=5mW)				-83		dB
	THD+N (Po=5mW)		IN2LN or Rload=		-81		dB
	PSRR (all other supplies 217Hz)	100mVpk-pk	HPOUT1RVOL 160hm		-49		dB
	Crosstalk (L/R)				-95		dB
F5	VRXP-VRXN Direct Voice	Path to Earpiece	e Driver (R _L =16Ω BTL)	1		1	1
	SNR (A-weighted)	-		90	104		dB
	THD (Po=50mW)				-69	-60	dB
	THD+N (P _o =50mW)				-67	-58	dB
	PSRR (all other supplies 217Hz)	100mVpk-pk	Direct Voice VRXP Path		-91		dB
	DC Offset at Load		HPOUT2N		5		mV

	PARAMETER		TEST CONDITIONS	MIN	TYP	MAX	UNIT				
F6	VRXP-VRXN Direct Voic	e Path to Speaker C	outputs (R _L =8Ω BTL)								
	SNR (A-weighted)				97		dB				
	THD (P ₀ =0.5W)				-63		dB				
	THD+N (P ₀ =0.5W)	Class D Mode			-62		dB				
	THD (P ₀ =1.0W)	SPK Boost=+12dB			-67		dB				
	THD+N (P _o =1.0W)				-65		dB				
	PSRR (all supplies 217Hz)		VRXN N C ADd SPKOUTLP or SPKOUTRP		-63		dB				
	SNR (A-weighted)		Direct		104		dB				
	THD (P ₀ =0.5W)		Voice / Rload		-68		dB				
	THD+N (P _o =0.5W)	Class AB Mode	VRXP Path		-65		dB				
	THD (P ₀ =1.0W)	SPK Boost=+12dB	SPKOUTLN or		-70		dB				
	THD+N (P _o =1.0W)		SPKOUTRN		-68		dB				
	PSRR (all supplies 217Hz)				-67		dB				
	DC Offset at Load	Class AB Mode SPK Boost=0dB	-		10		mV				
F7	Line Input to Speaker Outputs via SPKMIXL or SPKMIXR ($R_L=8\Omega$ BTL)										
	SNR (A-weighted)		SPKOUTLP or		93		dB				
	THD (P _o =0.5W)	-	SPKLVOL or SPKOUTRP		-63		dB				
	THD+N (Po=0.5W)	Class D Mode	IN1LP or SPKRVOL IN1RP OdB		-62		dB				
	THD (P ₀ =1.0W)	SPK Boost =+12dB			-67		dB				
	THD+N (P _o =1.0W)	-	SPKMIXL or SPKOUTLBOOST		-65		dB				
	PSRR (all other supplies 217Hz)	-	SPKOUTRBOOST SPKOUTLN or SPKOUTRN		-47		dB				
	SNR (A-weighted)			86	96		dB				
	THD (P ₀ =0.5W)				-68	-59	dB				
	THD+N (P _o =0.5W)				-65	-57	dB				
	THD (P _o =1.0W)	Class AB Mode SPK Boost=+12dB			-70		dB				
	THD+N (P _o =1.0W)				-68		dB				
	PSRR (all other supplies 217Hz)	1			-47		dB				
	DC Offset at Load	Class AB Mode SPK Boost=0dB			10		mV				

	PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT
Multi	Path Channel Separation					
G1	Headset Voice Call: DAC/Headset to Tx Voice Separation 1kHz 0dBFS DAC playback direct to HPOUT1L and HPOUT1R; Quiescent input on IN1LN/P or IN1RN/P (Gain=+12dB), differential line output; Measure crosstalk at differential line output	INILN or INILN or INILN or +12dB INIL or INIR (Bingle-ended or differential mode) INILD or INIRP Quiescent input Odd UNEOUT2PMIX or UNEOUT2PMIX or UNEOUT2PM		85		dB
G2	Headset Voice Call: DAC/Speaker to Tx Voice Separation 1kHz 0dBFS DAC playback to speakers, 1W/chan output; Quiescent input on IN1LN/P or IN1RN/P (Gain=+12dB), differential line output; Measure crosstalk at differential line output	INTLN or +12dB INIL or INTR INTRP Quiescent input		100		dB
G3	Earpiece PCM Voice Call: RXVOICE to Tx Voice Separation fs=8kHz for ADC and DAC, DAC_SB_FILT=1; -5dBFS, DAC output to HPOUT2P-HPOUT2N; Quiescent input on input PGA (Gain=+12dB) to ADC via MIXINL or MIXINR; Measure crosstalk at ADC output	INTLN, INZLN, INTRN or INZRN Guiescent input INTLP, INZLP, INTLP, INZLP, INZLP, INZLP,		110		dB
G4	Speakerphone PCM Voice Call: DAC/Speaker to ADC Separation fs=8kHz for ADC and DAC, DAC_SB_FILT=1; 0dBFS DAC output to speaker (1W output); ADC record from input PGA (Gain=+30dB); Measure crosstalk on ADC output	INTLN. INZLN. INTRN of INZEN INDUC Induscont INTLR INZLP. INTLR INZLP.		90		dB
G5	Speakerphone PCM Voice Call: ADC to DAC/Speaker Separation fs=8kHz for ADC and DAC, DAC_SB_FILT=1; Quiescent DAC output to speaker; ADC record from input PGA (Gain=+30dB + 30dB boost); Measure crosstalk on speaker output	INTLN. INZLN. INTLN or INZEN INTLP. INZLP. INTLP. INZLP. INTLP		95		dB

	PARAMETER	TEST CONDITIONS	MIN	ТҮР	MAX	UNIT
G6	Earpiece Speaker Voice Call: Tx Voice and RXVOICE Separation 1kHz Full scale differential input on VRXP-VRXN, output to HPOUT2P-HPOUT2N; Quiescent input on IN1LN/P or IN1RN/P (Gain=+12dB), differential line output; Measure crosstalk at differential line output	LINEOUTTINIX or QdB LINEOUTIN or LINEOUTIN O		100		dB
G7	Headset Voice Call: Tx Voice and RXVOICE Separation 1kHz full scale differential input on VRXP-VRXN via RXVOICE to MIXOUTL and MIXOUTR, output to HPOUT1L and HPOUT1R; Quiescent input on IN1LN/P or IN1RN/P (Gain=+12dB), differential line output; Measure crosstalk at differential line output	UNEOUTINMIX or UNEOUTINMIX or UNEOUTINMIX or UNEOUTINMIX or UNEOUTINMIX or UNEOUTIPMIX oF UNEOUTIPMIX OF UNEOUT		90		dB
G8	Stereo Line Record and Playback: DAC/Headset to ADC Separation -5dBFS input to DACs, playback to HPOUT1L and HPOUT1R; ADC record from line input; Measure crosstalk on ADC output	INTLP or INTRP Quiescent input CROSSTALK		95		dB

PAR	AMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT
Anal	ogue Reference Levels					
H1	VMID Midrail Reference Voltage		-3%	AVDD1/2	+3%	V
Micro	ophone Bias (MICBIAS1 and MICBIAS2)		•			
H2	Bias Voltage	2.4mA load current MICB1_LVL=0	-5%	0.9×AVDD1	+5%	V
		2.4mA load current MICB1_LVL=1	-5%	0.65×AVDD1	+5%	V
H3	Bias Current Source				2.4	mA
H4	Output Noise Spectral Density	1kHz to 20kHz		100		nV/√Hz
H6	MIC Current Detect Thresholds	JD_THR = 00		150		μA
		JD_THR = 01		300		μA
		JD_THR = 10		600		μA
		JD_THR = 11		1200		μA
	MIC Short Circuit Detect Thresholds	JD_SCTHR = 00		300		μA
		JD_SCTHR = 01		600		μA
		JD_SCTHR = 10		1200		μA
		JD_SCTHR = 11		2400		μA
	ge Pump					
H7	Start-up Time				500	μs
H8	Supply Voltage		1.71		2.0	V
H9	CPVOUTP	Normal mode		CPVDD		V
		Low power mode		CPVDD/2		V
H10	CPVOUTN					V
		Normal mode		-CPVDD		V
				-CPVDD -CPVDD/2		
H13	Flyback Capacitor (between CPFB1 and CPFB2)	Low power mode at 2V	1			V
H13 H14	(between CPFB1 and CPFB2)	Low power mode	1	-CPVDD/2		V V µF
		Low power mode at 2V		-CPVDD/2 2.2		V V
H14 H15	(between CPFB1 and CPFB2) CPVOUTP Capacitor	Low power mode at 2V at 2V	2	-CPVDD/2 2.2 2.2		ν ν μF
H14 H15	(between CPFB1 and CPFB2) CPVOUTP Capacitor CPVOUTN Capacitor	Low power mode at 2V at 2V	2	-CPVDD/2 2.2 2.2		ν ν μF
H14 H15 Digita	(between CPFB1 and CPFB2) CPVOUTP Capacitor CPVOUTN Capacitor al Input / Output	Low power mode at 2V at 2V	2 2	-CPVDD/2 2.2 2.2	0.2×DBVDD	V V μF μF
H14 H15 Digit H16 H17	(between CPFB1 and CPFB2) CPVOUTP Capacitor CPVOUTN Capacitor al Input / Output Input HIGH Level	Low power mode at 2V at 2V at 2V	2 2	-CPVDD/2 2.2 2.2	0.2×DBVDD	V V μF μF V
H14 H15 Digit H16 H17	(between CPFB1 and CPFB2) CPVOUTP Capacitor CPVOUTN Capacitor al Input / Output Input HIGH Level Input LOW Level	Low power mode at 2V at 2V at 2V	2 2	-CPVDD/2 2.2 2.2	0.2×DBVDD	V V μF μF V
H14 H15 Digit H16 H17 Note	(between CPFB1 and CPFB2) CPVOUTP Capacitor CPVOUTN Capacitor al Input / Output Input HIGH Level Input LOW Level that digital input pins should not be left unc	Low power mode at 2V at 2V at 2V	2 2 0.8×DBVDD	-CPVDD/2 2.2 2.2	0.2×DBVDD	V V μF μF V V
H14 H15 Digit H16 H17 Note H18	(between CPFB1 and CPFB2) CPVOUTP Capacitor CPVOUTN Capacitor al Input / Output Input HIGH Level Input LOW Level that digital input pins should not be left unc Output HIGH Level	Low power mode at 2V at 2V at 2V onnected / floating. IoL=1mA	2 2 0.8×DBVDD	-CPVDD/2 2.2 2.2		V V μF μF V V V

DCVDD = 1.2V, AVDD2 = DBVDD = CPVDD = 1.8V, AVDD1 = 3.0V, SPKVDD = 5V, DGND=AGND=CPGND=SPKGND=0V, $T_A = +25^{\circ}C$, 1kHz sinusoidal signal, fs = 48kHz, PGA gain = 0dB, 24-bit audio data unless otherwise stated.

PARA	METER	TEST CONDITIONS	MIN	TYP	MAX	UNIT
FLL						
H22	Input Frequency	FLL_CLK_REF_DIV = 00	0.032		13.5	MHz
		FLL_CLK_REF_DIV = 01	0.032		27	MHz
H23 Lock time		F _{REF} =32kHz, F _{OUT} =12.288MHz		2.5		ms
		F _{REF} =12MHz, F _{OUT} =12.288MHz		300		μs
H24	Free-running mode start-up time	VMID enabled		100		μs
H25	Free-running mode frequency accuracy	Reference supplied initially		+/-10		%
		No reference provided		+/-30		%
GPIO						
H26	Interrupt response time for accessory /	Input de-bounced	2^{19} / f_{CLK_SYS}		2^{22} / f _{CLK_SYS}	S
button detect		Input not de-bounced		0		S

TERMINOLOGY

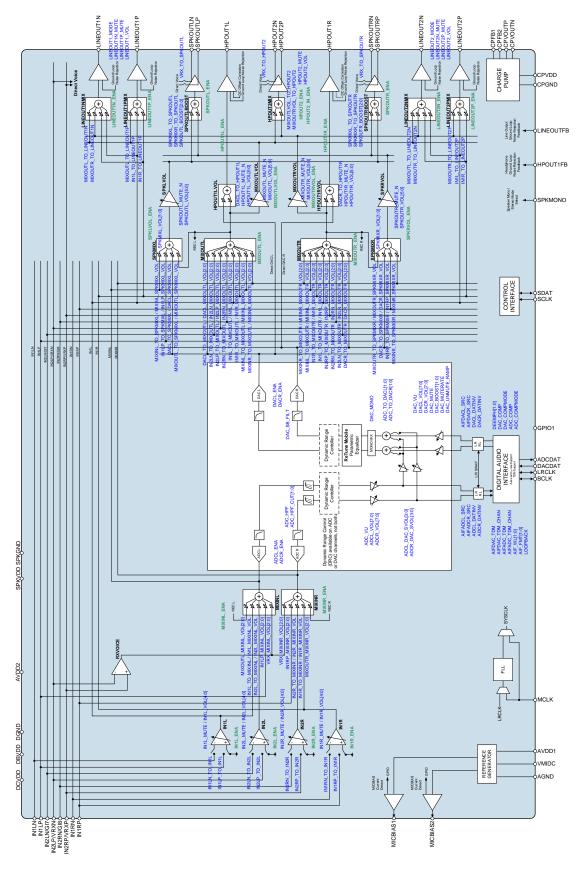
- 1. Signal-to-Noise Ratio (dB) SNR is a measure of the difference in level between the maximum full scale output signal and the output with no input signal applied.
- 2. Total Harmonic Distortion (dB) THD is the level of the rms value of the sum of harmonic distortion products relative to the amplitude of the measured output signal.
- 3. Total Harmonic Distortion plus Noise (dB) THD+N is the level of the rms value of the sum of harmonic distortion products plus noise in the specified bandwidth relative to the amplitude of the measured output signal.
- 4. Crosstalk (L/R) (dB) left-to-right and right-to-left channel crosstalk is the measured signal level in the idle channel at the test signal frequency relative to the signal level at the output of the active channel. The active channel is configured and supplied with an appropriate input signal to drive a full scale output, with signal measured at the output of the associated idle channel.
- 5. Multi-Path Channel Separation (dB) is the measured signal level in the idle path at the test signal frequency relative to the signal level at the output of the active path. The active path is configured and supplied with an appropriate input signal to drive a full scale output, with signal measured at the output of the specified idle path.
- 6. Mute Attenuation This is a measure of the difference in level between the full scale output signal and the output with mute applied.
- 7. All performance measurements carried out with 20kHz low pass filter, and where noted an A-weighted filter. Failure to use such a filter will result in higher THD and lower SNR readings than are found in the Electrical Characteristics. The low pass filter removes out of band noise; although it is not audible it may affect dynamic specification values.

TYPICAL PERFORMANCE

POWER CONSUMPTION

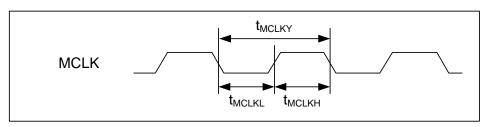
Mode	Other settings	AVDD1	SPKVDD	AVDD2	CPVDD	DBVDD	DCVDD	iAVDD1	iSPKVDD	iAVDD2	iCPVDD	iDBVDD	iDCVDD	TOTAL
	Other settings	(V)	(V)	(V)	(V)	(V)	(V)	(μA)	(μA)	(μA)	(μA)	(μA)	(μA)	(mW)
Battery Leakage														
All supplies except SPKVDD disabled		0.0	2.7	0.0	0.0	0.0	0.0	0.000	0.392	0.000	0.000	0.000	0.000	0.001
		0.0	3.7	0.0	0.0	0.0	0.0	0.000	0.451	0.000	0.000	0.000	0.000	0.002
		0.0	4.2	0.0	0.0	0.0	0.0	0.000	0.514	0.000	0.000	0.000	0.000	0.002
		0.0	5.0	0.0	0.0	0.0	0.0	0.000	0.627	0.000	0.000	0.000	0.000	0.003
		0.0	5.5	0.0	0.0	0.0	0.0	0.000	0.795	0.000	0.000	0.000	0.000	0.004
Standby / Sleep Leakage														
OFF (hermal sensor disabled)	No clocks	2.24	2.7	1.71	1.71	1.62	1.08	4.711	0.631	4.059	4.352	4.545	0.972	0.035
		3.0	5.0	1.8	1.8	1.8	1.2	5.919	1.463	4.215	4.223	6.352	1.015	0.053
		3.3	5.5	2.0	2.0	3.6	2.0	6.410	1.987	4.423	4.243	38.094	1.619	0.190
OFF (thermal sensor enabled)	No clocks	2.24	2.7	1.71	1.71	1.62	1.08	4.801	0.576	23.707	4.223	4.454	0.998	0.068
Default state at power-up		3.0	5.0	1.8	1.8	1.8	1.2	5.673	1.454	23.977	4.251	6.359	1.045	0.088
		3.3	5.5	2.0	2.0	3.6	2.0	6.186	1.942	24.657	4.523	38.016	1.585	0.229
OFF (thermal sensor enabled)	With clocks	2.24	2.7	1.71	1.71	1.62	1.08	4.663	0.761	23.701	3.988	6.872	201.000	0.288
Default state at power-up		3.0	5.0	1.8	1.8	1.8	1.2	5.737	1.467	24.029	4.132	9.075	225.000	0.362
		3.3	5.5	2.0	2.0	3.6	2.0	6.409	1.975	24.564	4.451	48.040	420.000	1.103
DAC Playback		1						(mA)	(mA)	(mA)	(mA)	(mA)	(mA)	(mW)
DAC to Headphone 16ohm	fs=48kHz	2.24	2.7	1.71	1.71	1.62	1.08	1.424	0.000	0.103	0.908	0.007	0.796	5.789
(DAC->HPOUTVOL->HPOUT1)	10-101012	3.0	5.0	1.8	1.8	1.8	1.2	1.950	0.001	0.149	1.248	0.009	0.888	9.453
		3.3	5.5	2.0	2.0	3.6	2.0	2.165	0.002	0.305	2.637	0.046	1.594	16.392
DAC to Stereo Speaker AB 80hm	fs=48kHz	2.24	2.7	1.71	1.71	1.62	1.08	1.617	6.083	0.098	0.004	0.007	0.768	21.062
(DAC->SPKMIX->SPKVOL->SPKOUT)		3.0	5.0	1.8	1.8	1.8	1.2	2.213	9.098	0.119	0.004	0.009	0.857	53,396
		3.3	5.5	2.0	2.0	3.6	2.0	2.457	10.237	0.131	0.004	0.045	1.538	67.922
DAC to Stereo Speaker D 80hm	fs=48kHz	2.24	2.7	1.71	1.71	1.62	1.08	1.627	0.577	0.891	0.004	0.007	0.773	7.579
(DAC->SPKMIX->SPKVOL->SPKOUT)		3.0	5.0	1.8	1.8	1.8	1.2	2.231	1.078	1.190	0.004	0.009	0.863	15.285
· · · · · · · · · · · · · · · · · · ·		3.3	5.5	2.0	2.0	3.6	2.0	2.476	1.202	1.334	0.005	0.046	1.547	20.717
ADC Record														
ADC Record	fs=48kHz	2.24	2.7	1.71	1.71	1.62	1.08	6.393	0.000	0.043	0.004	0.021	0.941	15.452
(IN1LN/P & IN1RN/P->IN1L/IN1R->MIXIN-	>ADC)	3.0	5.0	1.8	1.8	1.8	1.2	7.149	0.001	0.045	0.004	0.025	1.049	22.846
		3.3	5.5	2.0	2.0	3.6	2.0	7.430	0.002	0.048	0.004	0.075	1.890	28.685
Analogue Bypass														
VRX to Earpiece 16ohm		2.24	2.7	1.71	1.71	1.62	1.08	4.120	0.000	0.043	0.004	0.004	0.001	9.318
(VRXN/P->HPOUT2)		3.0	5.0	1.8	1.8	1.8	1.2	5.704	0.001	0.045	0.004	0.006	0.001	17.221
		3.3	5.5	2.0	2.0	3.6	2.0	6.335	0.002	0.048	0.004	0.038	0.002	21.161

Notes:


1. Power in the load is included.

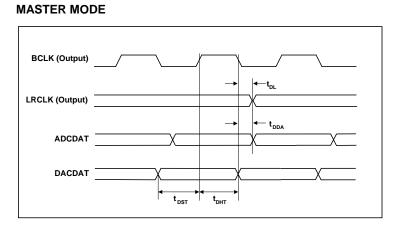
2. All figures are quoted at $T_A = 25^{\circ}C$.

3. All figures are quoted as quiescent current unless otherwise stated.


AUDIO SIGNAL PATHS DIAGRAM

SIGNAL TIMING REQUIREMENTS

MASTER CLOCK


Test Conditions

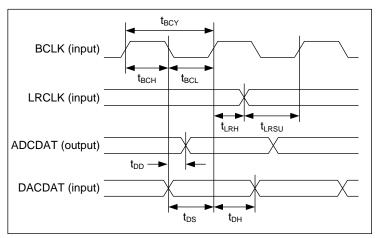
The following timing information is valid across the full range of recommended operating conditions.

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNIT
Master Clock Timing						
		(MCLK as input to FLL)	33.33			ns
MCLK cycle time	T _{MCLKY}	(FLL not used, MCLK_DIV = 1	40			ns
		(FLL not used, MCLK_DIV = 0	80			ns
MCLK duty cycle			60:40		40:60	
(= T _{MCLKH} : T _{MCLKL})						

AUDIO INTERFACE TIMING

Note that BCLK and LRCLK outputs can be inverted if required; Figure 3 shows the default, non-inverted polarity of these signals.

Test Conditions


The following timing information is valid across the full range of recommended operating conditions.

PARAMETER	SYMBOL	MIN	TYP	MAX	UNIT
Audio Interface Timing - Master Mode					
LRCLK propagation delay from BCLK falling edge	t _{DL}			20	ns
ADCDAT propagation delay from BCLK falling edge	t _{DDA}			20	ns
DACDAT setup time to BCLK rising edge	t _{DST}	20			ns
DACDAT hold time from BCLK rising edge	t _{DHT}	10			ns

Note that the descriptions above assume non-inverted polarity of BCLK and LRCLK.

SLAVE MODE

Note that BCLK and LRCLK inputs can be inverted if required; Figure 4 shows the default, non-inverted polarity.

Test Conditions

The following timing information is valid across the full range of recommended operating conditions.

PARAMETER	SYMBOL	MIN	TYP	MAX	UNIT
Audio Interface Timing - Slave Mode					
BCLK cycle time	t _{BCY}	50			ns
BCLK pulse width high	t _{BCH}	20			ns
BCLK pulse width low	t _{BCL}	20			ns
LRCLK set-up time to BCLK rising edge	t _{LRSU}	20			ns
LRCLK hold time from BCLK rising edge	t _{LRH}	10			ns
DACDAT hold time from BCLK rising edge	t _{DH}	10			ns
ADCDAT propagation delay from BCLK falling edge	t _{DD}			20	ns
DACDAT set-up time to BCLK rising edge	t _{DS}	20			ns

Note: BCLK period must always be greater than or equal to MCLK period.

Note: the descriptions above assume non-inverted polarity of BCLK and LRCLK.

TDM MODE

In TDM mode, it is important that two ADC devices to not attempt to drive the ADCDAT pin simultaneously. The timing of the WM8993 ADCDAT tri-stating at the start and end of the data transmission is described below.

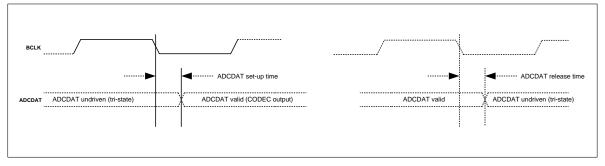
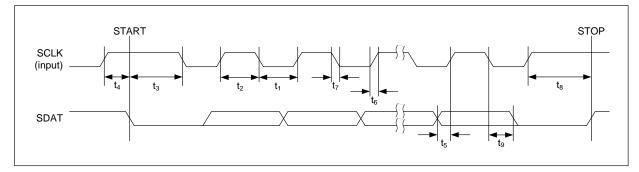


Figure 5 Audio Interface Timing - TDM Mode


Test Conditions

The following timing information is valid across the full range of recommended operating conditions.

PARAMETER	CONDITIONS	MIN	TYP	MAX	UNIT
Audio Data Timing Information					
ADCDAT setup time from BCLK falling edge	DCVDD =2.0V DBVDD = 3.6V		5		ns
	DCVDD = 1.08V DBVDD = 1.62V		15		ns
ADCDAT release time from BCLK falling edge	DCVDD = 2.0V DBVDD = 3.6V		5		ns
	DCVDD = 1.08V DBVDD = 1.62V		15		ns

CONTROL INTERFACE TIMING

Figure 6 Control Interface Timing

Test Conditions

The following timing information is valid across the full range of recommended operating conditions.

PARAMETER	SYMBOL	MIN	ТҮР	MAX	UNIT
SCLK Frequency				400	kHz
SCLK Low Pulse-Width	t ₁	1300			ns
SCLK High Pulse-Width	t ₂	600			ns
Hold Time (Start Condition)	t ₃	600			ns
Setup Time (Start Condition)	t4	600			ns
Data Setup Time	t ₅	100			ns
SDAT, SCLK Rise Time	t ₆			300	ns
SDAT, SCLK Fall Time	t ₇			300	ns
Setup Time (Stop Condition)	t ₈	600			ns
Data Hold Time	t ₉			900	ns
Pulse width of spikes that will be suppressed	t _{ps}	0		5	ns

DEVICE DESCRIPTION

INTRODUCTION

The WM8993 is a low power, high quality audio codec designed to interface with a wide range of processors and analogue components. A high level of mixed-signal integration in a very small 3.65 x 3.55mm footprint makes it ideal for portable applications such as mobile phones. Fully differential internal architecture and on-chip RF noise filters ensure a very high degree of noise immunity.

Eight highly flexible analogue inputs allow interfacing to up to four microphone inputs (single-ended or differential), plus multiple stereo or mono line inputs. Connections to an external voice CODEC, FM radio, melody IC, line input, handset MIC and headset MIC are all fully supported. Signal routing to the output mixers and within the CODEC has been designed for maximum flexibility to support a wide variety of usage modes. A 'Direct Voice' path from a voice CODEC directly to the Speaker or Earpiece output drivers is included.

Nine analogue output drivers are integrated, including a stereo pair of high power, high quality Class D/AB switchable speaker drivers; these can support 1W each in stereo mode, or can be coupled to support a 2W mono speaker output. A mono earpiece driver is provided, providing output from the output mixers or from the low-power differential 'Direct Voice' path.

One pair of ground-reference headphone outputs is provided; these are powered from an integrated Charge Pump, enabling high quality, power efficient headphone playback without any requirement for DC blocking capacitors. A DC Servo circuit is available for DC offset correction, thereby suppressing pops and reducing power consumption. Four line outputs are provided, with multiple configuration options including 4 x single-ended output or 2 x differential outputs. The line outputs are suitable for output to a voice CODEC or an external speaker driver. They are also capable of driving ear speakers and stereo headsets. Ground loop feedback is available on the headphone outputs and the line outputs, providing rejection of noise on the ground connections. All outputs have integrated pop and click suppression features.

Internal differential signal routing and amplifier configurations have been optimised to provide the lowest possible power consumption for a wide range of usage scenarios, including voice calls and music playback. The speaker drivers offer low leakage and high PSRR; this enables direct connection to a Lithium battery. The speaker drivers provide eight levels of AC and DC gain to allow output signal levels to be maximised for many commonly-used SPKVDD/AVDD1 combinations.

The stereo ADCs and DACs are of hi-fi quality, using a 24-bit low-order oversampling architecture to deliver optimum performance. A flexible clocking arrangement supports mixed ADC and DAC sample rates, whilst an integrated ultra-low power FLL provides additional flexibility. A high pass filter is available in the ADC path for removing DC offsets and suppressing low frequency noise such as mechanical vibration and wind noise. A digital mixing path from the ADC to the DAC provides a sidetone of enhanced quality during voice calls. DAC soft mute and un-mute is available for pop-free music playback.

The integrated Dynamic Range Controller (DRC) and ReTune Mobile 5-band parametric equaliser (EQ) provide further processing capability of the digital audio paths. The DRC provides compression and signal level control to improve the handling of unpredictable signal levels. 'Anti-clip' and 'quick release' algorithms improve intelligibility in the presence of transients and impulsive noises. The EQ provides the capability to tailor the audio path according to the frequency characteristics of an earpiece or loudspeaker, and/or according to user preferences.

The WM8993 has a highly flexible digital audio interface, supporting a number of protocols, including I²S, DSP, MSB-first left/right justified, and can operate in master or slave modes. PCM operation is supported in the DSP mode. A-law and μ -law companding are also supported. Time division multiplexing (TDM) is available to allow multiple devices to stream data simultaneously on the same bus, saving space and power.

The system clock (CLK_SYS) provides clocking for the ADCs, DACs, DSP core, digital audio interface and other circuits. CLK_SYS can be derived directly from the MCLK pin or via an integrated FLL, providing flexibility to support a wide range of clocking schemes. Typical portable system MCLK frequencies, and sample rates from 8kHz to 48kHz are all supported. Automatic configuration of the clocking circuits is available, derived from the sample rate and from the MCLK / CLK_SYS ratio.

The integrated FLL can be used as a free-running oscillator, enabling autonomous clocking of the Class D drivers, Headphone Charge Pump and DC Servo if required. (Note that hi-fi ADC / DAC operation requires an external crystal.)

The WM8993 uses a standard 2-wire control interface, providing full software control of all features, together with device register readback. An integrated Control Write Sequencer enables automatic scheduling of control sequences; commonly-used signal configurations may be selected using ready-programmed sequences, including time-optimised control of the WM8993 pop suppression features. It is an ideal partner for a wide range of industry standard microprocessors, controllers and DSPs. Unused circuitry can be disabled under software control, in order to save power; low leakage currents enable extended standby/off time in portable battery-powered applications.

Versatile GPIO functionality is provided, with support for button/accessory detect inputs, or for clock, system status, or programmable logic level output for control of additional external circuitry. Interrupt logic, status readback and de-bouncing options are supported within this functionality.

INPUT SIGNAL PATH

The WM8993 has eight highly flexible analogue input channels, configurable in a large number of combinations:

1. Up to four fully differential or single-ended microphone inputs

- 2. Up to eight mono line inputs or 4 stereo line inputs
- 3. A dedicated mono differential input from external voice CODEC

These inputs may be mixed together or independently routed to different combinations of output drivers. An internal record path is provided at the input mixers to allow DAC output to be mixed with the input signal path (e.g. for voice call recording).

The WM8993 input signal paths and control registers are illustrated in Figure 7.

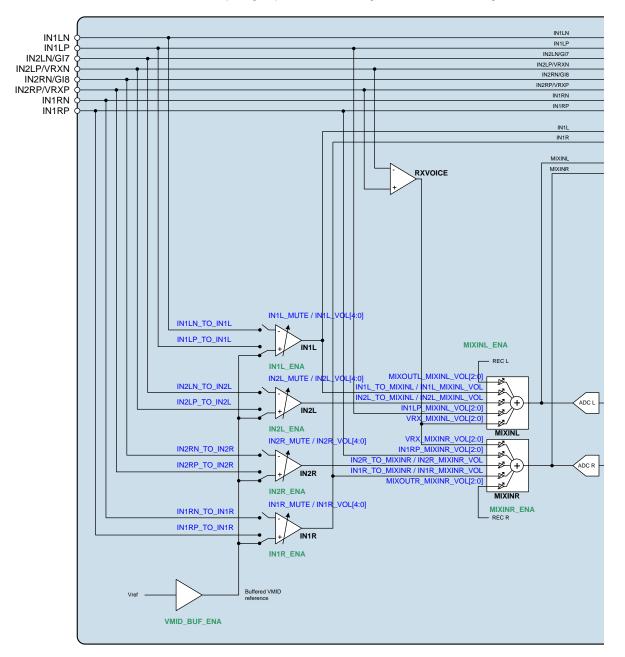
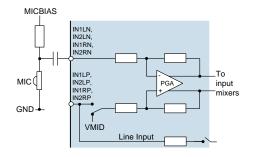


Figure 7 Control Registers for Input Signal Path

MICROPHONE INPUTS


Up to four microphones can be connected to the WM8993, either in single-ended or differential mode. A dedicated PGA is provided for each microphone input. Two low noise microphone bias circuits are provided, reducing the need for external components.

For single-ended microphone inputs, the microphone signal is connected to the inverting input of the PGAs (IN1LN, IN2LN, IN1RN or IN2RN). The non-inverting inputs of the PGAs are internally connected to VMID in this configuration. The non-inverting input pins IN1LP, IN2LP, IN1RP and IN2RP are free to be used as line connections to the input or output mixers in this configuration.

For differential microphone inputs, the non-inverted microphone signal is connected to the non-inverting input of the PGAs (IN1LP, IN2LP, IN1RP or IN2RP), whilst the inverted (or 'noisy ground') signal is connected to the inverting input pins (IN1LN, IN2LN, IN1RN and IN2RN).

The gain of the input PGAs is controlled via register settings, as defined in Table 4. Note that the input impedance of both inverting and non-inverting inputs changes with the input PGA gain setting, as described under "Electrical Characteristics". See also the "Applications Information" for details of input resistance at all PGA Gain settings.

The microphone input configurations are illustrated in Figure 8 and Figure 9. Note that any PGA input pin that is used in either microphone configuration is not available for use as a line input path at the same time.

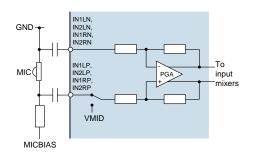


Figure 8 Single-Ended Microphone Input

Figure 9 Differential Microphone Input

MICROPHONE BIAS CONTROL

There are two MICBIAS generators which provide low noise reference voltages suitable for biasing electret condenser (ECM) type microphones via an external resistor. Note that an external decoupling capacitor is also required on each of the MICBIAS outputs. A suitable capacitor must be connected whenever the associated MICBIAS output is enabled. Refer to the "Applications Information" section for recommended external components.

The MICBIAS voltages can be enabled using the MICB1_ENA and MICB2_ENA control bits; the voltage of each can be selected using the MICB1_LVL and MICB2_LVL register bits as detailed in Table 1.

REGISTER ADDRESS	BIT	LABEL	DEFAULT	DESCRIPTION
R1 (01h) Power Managem	5	MICB2_ENA	Ob	Microphone Bias 2 Enable 0 = OFF (high impedance output) 1 = ON
ent (1)	4	MICB1_ENA	Ob	Microphone Bias 1 Enable 0 = OFF (high impedance output) 1 = ON

REGISTER ADDRESS	BIT	LABEL	DEFAULT	DESCRIPTION
R58 (3Ah)	1	MICB2_LVL	0b	Microphone Bias 2 Voltage Control
MICBIAS				0 = 0.9 * AVDD1
				1 = 0.65 * AVDD1
	0	MICB1_LVL	0b	Microphone Bias 1 Voltage Control
				0 = 0.9 * AVDD1
				1 = 0.65 * AVDD1

Table 1 Microphone Bias Control

Note that the maximum source current capability for MICBIAS1 and MICBIAS2 is 2.4mA each. The external biasing resistance must be large enough to limit each MICBIAS current to 2.4mA across the full microphone impedance range.

An external capacitor is required on MICBIAS1 and MICBIAS2 in order to ensure accuracy and stability of each regulator. The recommended capacitance is 4.7μ F in each case. See "Recommended External Components" for further details.

Note that, if the MICBIAS1 or MICBIAS2 regulator is not enabled, then no external capacitor is required on the respective MICBIAS pin.

MICROPHONE CURRENT DETECT

A MICBIAS current detect function allows detection of accessories such as headset microphones. When the MICBIAS load current exceeds one of two programmable thresholds, (e.g. short circuit current or normal operating current), an interrupt or GPIO output can be generated. The current detection circuit is enabled by the JD_ENA bit; the current thresholds are selected by the JD_THR and JD_SCTHR register fields as described in Table 66. See "General Purpose Input/Output" for a full description of these fields.

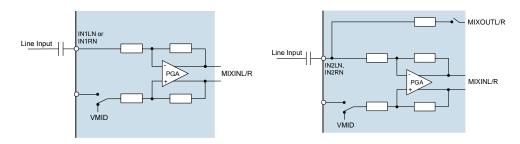
LINE AND VOICE CODEC INPUTS

All eight analogue input pins may be used as line inputs. Each line input has different signal path options, providing flexibility, high performance and low power consumption for many different usage modes.

IN1LN and IN1RN can operate as single-ended line inputs to the input PGAs IN1L and IN1R respectively. These inputs provide a high gain path if required for low input signal levels.

IN2LN and IN2RN can operate as single-ended line inputs to the input PGAs IN2L and IN2R respectively, providing further high gain signal paths. These pins can also be connected to either of the output mixers MIXOUTL and MIXOUTR.

IN1LP and IN1RP can operate as single-ended line inputs to the input mixers MIXINL and MIXINR, or to the speaker mixers SPKMIXL and SPKMIXR. These signal paths enable power consumption to be reduced, by allowing the input PGAs and other circuits to be disabled if not required.


IN2LP/VRXN and IN2RP/VRXP can operate in three different ways:

- Mono differential 'RXVOICE' input (e.g. from an external voice CODEC) to the input mixers MIXINL and MIXINR.
- Single-ended line inputs to either of the output mixers MIXOUTL and MIXOUTR.
- Ultra-low power mono differential 'Direct Voice' input (e.g. from an external voice CODEC) to the ear speaker driver on HPOUT2, or to either of the speaker drivers on SPKOUTL and SPKOUTR.

Signal path configuration to the input PGAs and input mixers is detailed later in this section. Signal path configuration to the output mixers and speaker mixers is described in "Output Signal Path".

The line input and voice CODEC input configurations are illustrated in Figure 10 through to Figure 13.

Figure 10 IN1LN or IN1RN as Line Inputs

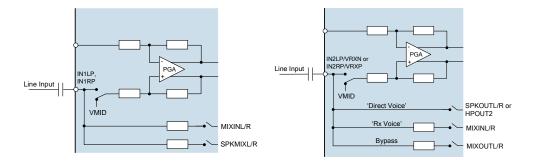


Figure 12 IN1LP or IN1RP as Line Inputs

Figure 13 IN2LP or IN2RP as Line Inputs

INPUT PGA ENABLE

The Input PGAs are enabled using register bits IN1L_ENA, IN2L_ENA, IN1R_ENA and IN2R_ENA, as described in Table 2. The Input PGAs must be enabled for microphone input on the respective input pins, or for line input on the inverting input pins IN1LN, IN1RN, IN2LN, IN2RN.

REGISTER ADDRESS	BIT	LABEL	DEFAULT	DESCRIPTION
R2 (02h)	7	IN2L_ENA	0b	IN2L Input PGA Enable
Power				0 = Disabled
Management				1 = Enabled
(2)	6	IN1L_ENA	0b	IN1L Input PGA Enable
				0 = Disabled
				1 = Enabled
	5	IN2R_ENA	0b	IN2R Input PGA Enable
				0 = Disabled
				1 = Enabled
	4	IN1R_ENA	0b	IN1R Input PGA Enable
				0 = Disabled
				1 = Enabled

Table 2 Input PGA Enable

For normal operation of the input PGAs, the reference voltage VMID and the bias current must also be enabled. See "Reference Voltages and Master Bias" for details of the associated controls VMID_SEL and BIAS_ENA.

INPUT PGA CONFIGURATION

Each of the Input PGAs can operate in a single-ended or differential mode. In differential mode, both inputs to the PGA are connected to the input source. In single-ended mode, the non-inverting input to the PGA must be connected to VMID. Configuration of the PGA inputs to the WM8993 input pins is controlled using the register bits shown in Table 3.

Single-ended microphone operation is configured by connecting the input source to the inverting input of the applicable PGA. The non-inverting input of the PGA must be connected to the buffered VMID reference. Note that the buffered VMID reference must be enabled, using the VMID_BUF_ENA register, as described in "Reference Voltages and Master Bias".

Differential microphone operation is configured by connecting the input source to both inputs of the applicable PGA.

Line inputs to the input pins IN1LN, IN2LN, IN1RN and IN2RN must be connected to the applicable PGA. The non-inverting input of the PGA must be connected to VMID.

Line inputs to the input pins IN1LP, IN2LP, IN1RP or IN2RP do not connect to the input PGAs. The non-inverting inputs of the associated PGAs must be connected to VMID. The inverting inputs of the associated PGAs may be used as separate mic/line inputs if required.

The maximum available attenuation on any of these input paths is achieved by using register bits shown in Table 3 to disconnect the input pins from the applicable PGA.

REGISTER ADDRESS	BIT	LABEL	DEFAULT	DESCRIPTION
R40 (28h) Input Mixer2	7	IN2LP_TO_IN2L	Ob	IN2L PGA Non-Inverting Input Select 0 = Connected to VMID 1 = Connected to IN2LP Note that VMID_BUF_ENA must be set when using IN2L connected to VMID.
	6	IN2LN_TO_IN2L	Ob	IN2L PGA Inverting Input Select 0 = Not connected 1 = Connected to IN2LN
	5	IN1LP_TO_IN1L	Ob	IN1L PGA Non-Inverting Input Select 0 = Connected to VMID 1 = Connected to IN1LP Note that VMID_BUF_ENA must be set when using IN2L connected to VMID.
	4	IN1LN_TO_IN1L	Ob	IN1L PGA Inverting Input Select 0 = Not connected 1 = Connected to IN1LN
	3	IN2RP_TO_IN2R	Ob	IN2R PGA Non-Inverting Input Select 0 = Connected to VMID 1 = Connected to IN2RP Note that VMID_BUF_ENA must be set when using IN2L connected to VMID.
	2	IN2RN_TO_IN2R	Ob	IN2R PGA Inverting Input Select 0 = Not connected 1 = Connected to IN2RN
	1	IN1RP_TO_IN1R	Ob	IN1R PGA Non-Inverting Input Select 0 = Connected to VMID 1 = Connected to IN1RP Note that VMID_BUF_ENA must be set when using IN2L connected to VMID.
Table 2 Januar Do	0	IN1RN_TO_IN1R	Ob	IN1R PGA Inverting Input Select 0 = Not connected 1 = Connected to IN1RN

Table 3 Input PGA Configuration

INPUT PGA VOLUME CONTROL

Each of the four Input PGAs has an independently controlled gain range of -16.5dB to +30dB in 1.5dB steps. The gains on the inverting and non-inverting inputs to the PGAs are always equal. Each Input PGA can be independently muted using the PGA mute bits as described in Table 4, with maximum mute attenuation achieved by simultaneously disconnecting the corresponding inputs described in Table 3.

To prevent "zipper noise", a zero-cross function is provided on the input PGAs. When this feature is enabled, volume updates will not take place until a zero-crossing is detected. In the case of a long period without zero-crossings, a timeout function is provided. When the zero-cross function is enabled, the volume will update after the timeout period if no earlier zero-cross has occurred. The timeout clock is enabled using TOCLK_ENA, the timeout period is set by TOCLK_RATE. See "Clocking and Sample Rates" for more information on these fields.

The IN1_VU and IN2_VU bits control the loading of the input PGA volume data. When IN1_VU and IN2_VU are set to 0, the PGA volume data will be loaded into the respective control register, but will not actually change the gain setting. The IN1L and IN1R volume settings are both updated when a 1 is written to IN1_VU; the IN2L and IN2R volume settings are both updated when a 1 is written to IN2_VU. This makes it possible to update the gain of the left and right signal paths simultaneously.

REGISTER ADDRESS	BIT	LABEL	DEFAULT	DESCRIPTION
R24 (18h)	8	IN1_VU	N/A	Input PGA Volume Update
Left Line Input 1&2 Volume				Writing a 1 to this bit will cause IN1L and IN1R input PGA volumes to be updated simultaneously
	7	IN1L_MUTE	1b	IN1L PGA Mute
				0 = Disable Mute
				1 = Enable Mute
	6	IN1L_ZC	0b	IN1L PGA Zero Cross Detector
				0 = Change gain immediately
				1 = Change gain on zero cross only
	4:0	IN1L_VOL	01011b	IN1L Volume
		[4:0]	(0dB)	-16.5dB to +30dB in 1.5dB steps
				(See Table 5 for volume range)
R25 (19h)	8	IN2_VU	N/A	Input PGA Volume Update
Left Line Input 3&4 Volume				Writing a 1 to this bit will cause IN2L and IN2R input PGA volumes to be updated simultaneously
	7	IN2L_MUTE	1b	IN2L PGA Mute
				0 = Disable Mute
				1 = Enable Mute
	6	IN2L_ZC	0b	IN2L PGA Zero Cross Detector
				0 = Change gain immediately
				1 = Change gain on zero cross only
	4:0	IN2L_VOL	01011b	IN2L Volume
		[4:0]	(0dB)	-16.5dB to +30dB in 1.5dB steps
				(See Table 5 for volume range)

The Input PGA Volume Control register fields are described in Table 4 and Table 5.

REGISTER ADDRESS	BIT	LABEL	DEFAULT	DESCRIPTION
R26 (1Ah)	8	IN1_VU	N/A	Input PGA Volume Update
Right Line Input 1&2 Volume				Writing a 1 to this bit will cause IN1L and IN1R input PGA volumes to be updated simultaneously
	7	IN1R_MUTE	1b	IN1R PGA Mute
				0 = Disable Mute
				1 = Enable Mute
	6	IN1R_ZC	0b	IN1R PGA Zero Cross Detector
				0 = Change gain immediately
				1 = Change gain on zero cross only
	4:0	IN1R_VOL	01011b	IN1R Volume
		[4:0]	(0dB)	-16.5dB to +30dB in 1.5dB steps
				(See Table 5 for volume range)
R27 (1Bh)	8	IN2_VU	N/A	Input PGA Volume Update
Right Line Input 3&4 Volume				Writing a 1 to this bit will cause IN2L and IN2R input PGA volumes to be updated simultaneously
	7	IN2R_MUTE	1b	IN2R PGA Mute
				0 = Disable Mute
				1 = Enable Mute
	6	IN2R_ZC	0b	IN2R PGA Zero Cross Detector
				0 = Change gain immediately
				1 = Change gain on zero cross only
	4:0	IN2R_VOL	01011b	IN2R Volume
		[4:0]	(0dB)	-16.5dB to +30dB in 1.5dB steps
				(See Table 5 for volume range)

Table 4 Input PGA Volume Control

IN1L_VOL[4:0], IN2L_VOL[4:0], IN1R_VOL[4:0], IN2R_VOL[4:0]	VOLUME (dB)
00000	-16.5
00001	-15.0
00010	-13.5
00011	-12.0
00100	-10.5
00101	-9.0
00110	-7.5
00111	-6.0
01000	-4.5
01001	-3.0
01010	-1.5
01011	0
01100	+1.5
01101	+3.0
01110	+4.5
01111	+6.0
10000	+7.5
10001	+9.0
10010	+10.5

IN1L_VOL[4:0], IN2L_VOL[4:0], IN1R_VOL[4:0], IN2R_VOL[4:0]	VOLUME (dB)
10011	+12.0
10100	+13.5
10101	+15.0
10110	+16.5
10111	+18.0
11000	+19.5
11001	+21.0
11010	+22.5
11011	+24.0
11100	+25.5
11101	+27.0
11110	+28.5
11111	+30.0

Table 5 Input PGA Volume Range

INPUT MIXER ENABLE

The WM8993 has two analogue input mixers which allow the Input PGAs and Line Inputs to be combined in a number of ways and output to the ADCs, Output Mixers, or directly to the output drivers via bypass paths.

The input mixers MIXINL and MIXINR are enabled by the MIXINL_ENA and MIXINR_ENA register bits, as described in Table 6. These control bits also enable the RXVOICE input path, described in the following section.

REGISTER ADDRESS	BIT	LABEL	DEFAULT	DESCRIPTION
R2 (02h)	9	MIXINL_ENA	0b	Left Input Mixer Enable
Power Management				(Enables MIXINL and RXVOICE input to MIXINL)
(2)				0 = Disabled
				1 = Enabled
	8	MIXINR_ENA	0b	Right Input Mixer Enable
				(Enables MIXINR and RXVOICE input to MIXINR)
				0 = Disabled
				1 = Enabled

Table 6 Input Mixer Enable

INPUT MIXER CONFIGURATION AND VOLUME CONTROL

The left and right channel input mixers MIXINL and MIXINR can be configured to take input from up to five sources:

- 1. IN1L or IN1R Input PGA
- 2. IN2L or IN2R Input PGA
- 3. IN1LP or IN1RP pin (PGA bypass)
- 4. RXVOICE mono differential input from IN2LP/VRXN and IN2RP/VRXP
- 5. MIXOUTL or MIXOUTR Output Mixer (Record path)

The Input Mixer configuration and volume controls are described in Table 7 for the Left input mixer (MIXINL) and Table 8 for the Right input mixer (MIXINR). The signal levels from the Input PGAs may be set to Mute, 0dB or 30dB boost. Gain controls for the PGA bypass, RXVOICE and Record paths provide adjustment from -12dB to +6dB in 3dB steps.

To prevent pop noise, it is recommended that gain and mute controls for the input mixers are not modified while the signal paths are active. If volume control is required on these signal paths, it is recommended that this is implemented using the input PGA volume controls or the ADC volume controls. The ADC volume controls are described in the "Analogue to Digital Converter (ADC)" section.

REGISTER ADDRESS	BIT	LABEL	DEFAULT	DESCRIPTION
R41 (29h) Input Mixer3	8	IN2L_TO_MIXINL	Ob	IN2L PGA Output to MIXINL Mute 0 = Mute 1 = Un-Mute
	7	IN2L_MIXINL_VOL	Ob	IN2L PGA Output to MIXINL Gain 0 = 0dB 1 = +30dB
	5	IN1L_TO_MIXINL	Ob	IN1L PGA Output to MIXINL Mute 0 = Mute 1 = Un-Mute
	4	IN1L_MIXINL_VOL	Ob	IN1L PGA Output to MIXINL Gain 0 = 0dB 1 = +30dB
	2:0	MIXOUTL_MIXINL_VOL [2:0]	000b (Mute)	Record Path MIXOUTL to MIXINL Gain and Mute 000 = Mute 001 = -12dB 010 = -9dB 011 = -6dB 100 = -3dB 101 = 0dB 110 = +3dB 111 = +6dB
R43 (2Bh) Input Mixer5	8:6	IN1LP_MIXINL_VOL [2:0]	000b (Mute)	IN1LP Pin (PGA Bypass) to MIXINL Gain and Mute 000 = Mute 001 = -12dB 010 = -9dB 011 = -6dB 100 = -3dB 101 = 0dB 110 = +3dB 111 = +6dB
	2:0	VRX_MIXINL_VOL [2:0]	000b (Mute)	RXVOICE (VRXN/VRXP) Differential Input to MIXINL Gain and Mute 000 = Mute 001 = -12dB 010 = -9dB 011 = -6dB 100 = -3dB 101 = 0dB 110 = +3dB 111 = +6dB

Table 7 Left Input Mixer (MIXINL) Volume Control

REGISTER ADDRESS	BIT	LABEL	DEFAULT	DESCRIPTION
R42 (2A) Input Mixer4	8	IN2R_TO_MIXINR	Ob	IN2R PGA Output to MIXINR Mute 0 = Mute 1 = Un-Mute
	7	IN2R_MIXINR_VOL	Ob	IN2R PGA Output to MIXINR Gain 0 = 0dB 1 = +30dB
	5	IN1R_TO_MIXINR	Ob	IN1R PGA Output to MIXINR Mute 0 = Mute 1 = Un-Mute
	4	IN1R_MIXINR_VOL	Ob	IN1R PGA Output to MIXINR Gain 0 = 0dB 1 = +30dB
	2:0	MIXOUTR_MIXINR_VOL [2:0]	000b (Mute)	Record Path MIXOUTR to MIXINR Gain and Mute 000 = Mute 001 = -12dB 010 = -9dB 011 = -6dB 100 = -3dB 101 = 0dB 110 = +3dB 111 = +6dB
R44 (2Ch) Input Mixer6	8:6	IN1RP_MIXINR_VOL [2:0]	000b (Mute)	IN1RP Pin (PGA Bypass) to MIXINR Gain and Mute 000 = Mute 001 = -12dB 010 = -9dB 011 = -6dB 100 = -3dB 101 = 0dB 110 = +3dB 111 = +6dB
	2:0	VRX_MIXINR_VOL [2:0]	000b (Mute)	RXVOICE (VRXN/VRXP) Differential Input to MIXINR Gain and Mute 000 = Mute 001 = -12dB 010 = -9dB 011 = -6dB 100 = -3dB 101 = 0dB 110 = +3dB 111 = +6dB

Table 8 Right Input Mixer (MIXINR) Volume Control

ANALOGUE TO DIGITAL CONVERTER (ADC)

The WM8993 uses stereo 24-bit, 128x oversampled sigma-delta ADCs. The use of multi-bit feedback and high oversampling rates reduces the effects of jitter and high frequency noise. An oversample rate of 64x can also be supported - see "Clocking and Sample Rates" for details. The ADC full scale input level is proportional to AVDD1 - see "Electrical Characteristics". Any input signal greater than full scale may overload the ADC and cause distortion.

The ADCs are enabled by the ADCL_ENA and ADCR_ENA register bits.

REGISTER ADDRESS	BIT	LABEL	DEFAULT	DESCRIPTION
R2 (02h)	1	ADCL_ENA	0	Left ADC Enable
Power				0 = ADC disabled
Management (2)				1 = ADC enabled
	0	ADCR_ENA	0	Right ADC Enable
				0 = ADC disabled
				1 = ADC enabled

Table 9 ADC Enable Control

ADC DIGITAL VOLUME CONTROL

The output of the ADCs can be digitally amplified or attenuated over a range from -71.625dB to +17.625dB in 0.375dB steps. The volume of each channel can be controlled separately. The gain for a given eight-bit code X is given by:

 $0.375 \times (X-192) \text{ dB}$ for $1 \le X \le 239$; MUTE for X = 0 +17.625dB for $239 \le X \le 255$

The ADC_VU bit controls the loading of digital volume control data. When ADC_VU is set to 0, the ADCL_VOL or ADCR_VOL control data will be loaded into the respective control register, but will not actually change the digital gain setting. Both left and right gain settings are updated when a 1 is written to ADC_VU. This makes it possible to update the gain of both channels simultaneously.

REGISTER ADDRESS	BIT	LABEL	DEFAULT	DESCRIPTION
R15 (0Fh)	8	ADC_VU	N/A	ADC Volume Update
Left ADC Digital Volume				Writing a 1 to this bit will cause left and right ADC volume to be updated simultaneously
	7:0	ADCL_VOL	1100_0000	Left ADC Digital Volume
		[7:0]	(0dB)	00h = MUTE
				01h = -71.625dB
				(0.375dB steps)
				EFh = +17.625dB
				(See Table 11 for volume range)
R16 (10h)	8	ADC_VU	N/A	ADC Volume Update
Right ADC Digital Volume				Writing a 1 to this bit will cause left and right ADC volume to be updated simultaneously
	7:0	ADCR_VOL	1100_0000	Right ADC Digital Volume
		[7:0]	(0dB)	00h = MUTE
				01h = -71.625dB
				(0.375dB steps)
				EFh = +17.625dB
				(See Table 11 for volume range)

Table 10 ADC Digital Volume Control

ADCL_VOL or		ADCL_VOL or		ADCL_VOL or		ADCL_VOL or	
ADCR_VOL	Volume (dB)	ADCR_VOL	Volume (dB)	ADCR_VOL	Volume (dB)	ADCR_VOL	Volume (dB)
Oh	MUTE	40h	-48.000	80h	-24.000	C0h	0.000
1h	-71.625	41h	-47.625	81h	-23.625	C1h	0.375
2h	-71.250	42h	-47.250	82h	-23.250	C2h	0.750
3h	-70.875	43h	-46.875	83h	-22.875	C3h	1.125
4h 5h	-70.500 -70.125	44h 45h	-46.500 -46.125	84h 85h	-22.500 -22.125	C4h C5h	1.500 1.875
511 6h	-70.125	451 46h	-46.125 -45.750	86h	-22.125	C6h	2.250
7h	-69.375	401 47h	-45.375	87h	-21.375	C7h	2.625
8h	-69.000	48h	-45.000	88h	-21.000	C8h	3.000
9h	-68.625	49h	-44.625	89h	-20.625	C9h	3.375
Ah	-68.250	4Ah	-44.250	8Ah	-20.250	CAh	3.750
Bh	-67.875	4Bh	-43.875	8Bh	-19.875	CBh	4.125
Ch	-67.500	4Ch	-43.500	8Ch	-19.500	CCh	4.500
Dh	-67.125	4Dh	-43.125	8Dh	-19.125	CDh	4.875
Eh	-66.750	4Eh	-42.750	8Eh	-18.750	CEh	5.250
Fh	-66.375	4Fh	-42.375	8Fh	-18.375	CFh	5.625
10h	-66.000	50h	-42.000	90h	-18.000	D0h	6.000
11h	-65.625	51h	-41.625	91h	-17.625	D1h	6.375
12h	-65.250	52h	-41.250	92h	-17.250	D2h	6.750
13h	-64.875	53h	-40.875	93h	-16.875 -16.500	D3h	7.125
14h	-64.500 -64.125	54h	-40.500 -40.125	94h		D4h	7.500
15h 16h	-64.125	55h 56h	-40.125 -39.750	95h 96h	-16.125 -15.750	D5h D6h	7.875 8.250
17h	-63.375	57h	-39.375	97h	-15.375	D7h	8.625
18h	-63.000	58h	-39.000	98h	-15.000	D8h	9.000
19h	-62.625	59h	-38.625	99h	-14.625	D9h	9.375
1Ah	-62.250	5Ah	-38.250	9Ah	-14.250	DAh	9.750
1Bh	-61.875	5Bh	-37.875	9Bh	-13.875	DBh	10.125
1Ch	-61.500	5Ch	-37.500	9Ch	-13.500	DCh	10.500
1Dh	-61.125	5Dh	-37.125	9Dh	-13.125	DDh	10.875
1Eh	-60.750	5Eh	-36.750	9Eh	-12.750	DEh	11.250
1Fh	-60.375	5Fh	-36.375	9Fh	-12.375	DFh	11.625
20h	-60.000	60h	-36.000	A0h	-12.000	E0h	12.000
21h	-59.625	61h	-35.625	A1h	-11.625	E1h	12.375
22h	-59.250	62h	-35.250	A2h	-11.250	E2h	12.750
23h	-58.875	63h	-34.875	A3h	-10.875	E3h	13.125
24h	-58.500	64h	-34.500	A4h	-10.500	E4h	13.500
25h	-58.125	65h	-34.125	A5h	-10.125	E5h	13.875
26h 27h	-57.750	66h 67h	-33.750 -33.375	A6h A7h	-9.750 -9.375	E6h E7h	14.250 14.625
2711 28h	-57.375 -57.000	68h	-33.000	A8h	-9.375	E8h	15.000
29h	-56.625	69h	-32.625	A9h	-8.625	E9h	15.375
2Ah	-56.250	6Ah	-32.250	AAh	-8.250	EAh	15.750
2Bh	-55.875	6Bh	-31.875	ABh	-7.875	EBh	16.125
2Ch	-55.500	6Ch	-31.500	ACh	-7.500	ECh	16.500
2Dh	-55.125	6Dh	-31.125	ADh	-7.125	EDh	16.875
2Eh	-54.750	6Eh	-30.750	AEh	-6.750	EEh	17.250
2Fh	-54.375	6Fh	-30.375	AFh	-6.375	EFh	17.625
30h	-54.000	70h	-30.000	B0h	-6.000	F0h	17.625
31h	-53.625	71h	-29.625	B1h	-5.625	F1h	17.625
32h	-53.250	72h	-29.250	B2h	-5.250	F2h	17.625
33h	-52.875	73h	-28.875	B3h	-4.875	F3h	17.625
34h	-52.500	74h	-28.500	B4h	-4.500	F4h	17.625
35h	-52.125	75h	-28.125	B5h	-4.125	F5h	17.625
36h 37h	-51.750 -51.375	76h 77b	-27.750 -27.375	B6h B7b	-3.750 -3.375	F6h E7b	17.625
37h 38h	-51.375 -51.000	77h 78h	-27.375 -27.000	B7h B8h	-3.375 -3.000	F7h F8h	17.625 17.625
38h 39h	-51.000	78h 79h	-27.000	B8n B9h	-3.000 -2.625	F8h	17.625
3Ah	-50.250	7Ah	-26.250	BAh	-2.025	FAh	17.625
3Bh	-49.875	7Bh	-25.875	BBh	-1.875	FBh	17.625
3Ch	-49.500	7Ch	-25.500	BCh	-1.500	FCh	17.625
3Dh	-49.125	7Dh	-25.125	BDh	-1.125	FDh	17.625
3Eh	-48.750	7Eh	-24.750	BEh	-0.750	FEh	17.625
3Fh	-48.375	7Fh	-24.375	BFh	-0.375	FFh	17.625

Table 11 ADC Digital Volume Range

HIGH PASS FILTER

A digital high pass filter is applied by default to the ADC path to remove DC offsets. This filter can also be programmed to remove low frequency noise in voice applications (e.g. wind noise or mechanical vibration). This filter is controlled using the ADC_HPF and ADC_HPF_CUT register bits.

In hi-fi mode the high pass filter is optimised for removing DC offsets without degrading the bass response and has a cut-off frequency of 3.7Hz at fs=44.1kHz.

In voice mode the high pass filter is optimised for voice communication and it is recommended to program the cut-off frequency below 300Hz (e.g. ADC_HPF_CUT=11 at fs=8kHz or ADC_HPF_CUT=10 at fs=16kHz).

REGISTER ADDRESS	BIT	LABEL	DEFAULT	DESCRIPTION
R14 (0Eh) ADC CTRL	8	ADC_HPF	1	ADC Digital High Pass Filter Enable 0 = disabled 1 = enabled
	6:5	ADC_HPF_CUT [1:0]	00	ADC Digital High Pass Filter Cut-Off Frequency (fc) 00 = Hi-fi mode (fc=4Hz at fs=48kHz) 01 = Voice mode 1 (fc=127Hz at fs=16kHz) 10 = Voice mode 2 (fc=130Hz at fs=8kHz) 11 = Voice mode 3 (fc=267Hz at fs=8kHz) (Note: fc scales with sample rate. See Table 13 for cut-off frequencies at all supported sample rates)

Table 12 ADC High Pass Filter Control Registers

Sample	CUT-OFF FREQUENCY (Hz)				
Frequency (kHz)	ADC_HPF_CUT =00	ADC_HPF_CUT =01	ADC_HPF_CUT =10	ADC_HPF_CUT =11	
8.000	0.7	64	130	267	
11.025	0.9	88	178	367	
16.000	1.3	127	258	532	
22.050	1.9	175	354	733	
24.000	2.0	190	386	798	
32.000	2.7	253	514	1063	
44.100	3.7	348	707	1464	
48.000	4.0	379	770	1594	

Table 13 ADC High Pass Filter Cut-Off Frequencies

The high pass filter characteristics are shown in the "Digital Filter Characteristics" section.

DIGITAL MIXING

The ADC and DAC data can be combined in various ways to support a range of different usage modes.

Data from either of the two ADCs can be routed to either the left or the right channel of the digital audio interface. In addition, data from either of the digital audio interface channels can be routed to either the left or the right DAC. See "Digital Audio Interface" for more information on the audio interface.

The WM8993 provides a Dynamic Range Control (DRC) feature, which can apply compression and gain adjustment in the digital domain to either the ADC or DAC signal path. This is effective in controlling signal levels under conditions where input amplitude is unknown or varies over a wide range.

The DACs can be configured as a mono mix of the two audio channels. Digital sidetone from the ADCs can also be selectively mixed into the DAC output path.

DIGITAL MIXING PATHS

Figure 14 shows the digital mixing paths available in the WM8993 digital core.

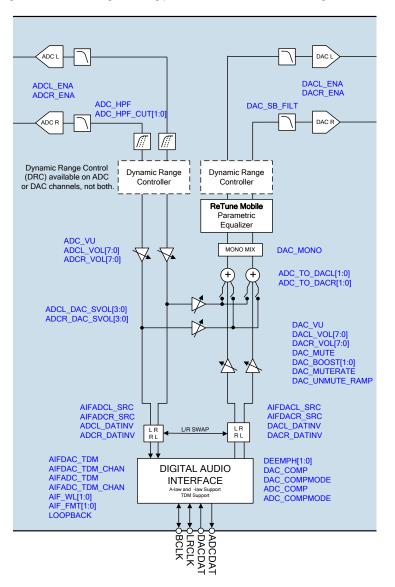


Figure 14 Digital Mixing Paths

The polarity of each ADC output signal can be changed under software control using the ADCL_DATINV and ADCR_DATINV register bits. The AIFADCL_SRC and AIFADCR_SRC register bits may be used to select which ADC is used for the left and right digital audio interface data. These register bits are described in Table 14.

REGISTER ADDRESS	BIT	LABEL	DEFAULT	DESCRIPTION
R4 (04h)	15	AIFADCL_SRC	0	Left Digital Audio interface source
Audio				0 = Left ADC data is output on left channel
Interface (1)				1 = Right ADC data is output on left channel
	14	AIFADCR_SRC	1	Right Digital Audio interface source
				0 = Left ADC data is output on right channel
				1 = Right ADC data is output on right channel
R14 (0Eh)	1	ADCL_DATINV	0	Left ADC Invert
ADC CTRL				0 = Left ADC output not inverted
				1 = Left ADC output inverted
	0	ADCR_DATINV	0	Right ADC Invert
				0 = Right ADC output not inverted
				1 = Right ADC output inverted

Table 14 ADC Routing and Control

The input data source for each DAC can be changed under software control using register bits AIFDACL_SRC and AIFDACR_SRC. The polarity of each DAC input may also be modified using register bits DACL_DATINV and DACR_DATINV. These register bits are described in Table 15.

REGISTER ADDRESS	BIT	LABEL	DEFAULT	DESCRIPTION
R5 (05h)	15	AIFDACL_SRC	0	Left DAC Data Source Select
Audio				0 = Left DAC outputs left interface data
Interface (2)				1 = Left DAC outputs right interface data
	14	AIFDACR_SRC	1	Right DAC Data Source Select
				0 = Right DAC outputs left interface data
				1 = Right DAC outputs right interface data
R10 (0Ah)	1	DACL_DATINV	0	Left DAC Invert
DAC CTRL				0 = Left DAC output not inverted
				1 = Left DAC output inverted
	0	DACR_DATINV	0	Right DAC Invert
				0 = Right DAC output not inverted
				1 = Right DAC output inverted

Table 15 DAC Routing and Control

DAC INTERFACE VOLUME BOOST

A digital gain function is available at the audio interface to boost the DAC volume when a small signal is received on DACDAT. This is controlled using register bits DAC_BOOST[1:0]. To prevent clipping at the DAC input, this function should not be used when the boosted DAC data is expected to be greater than 0dBFS.

REGISTER ADDRESS	BIT	LABEL	DEFAULT	DESCRIPTION
R5 (05h)	11:10	DAC_BOOST	00	DAC Input Volume Boost
Audio		[1:0]		00 = 0dB
Interface (2)				01 = +6dB (Input data must not exceed -6dBFS)
				10 = +12dB (Input data must not exceed -12dBFS)
				11 = +18dB (Input data must not exceed -18dBFS)

 Table 16 DAC Interface Volume Boost

DIGITAL SIDETONE

A digital sidetone is available when ADCs and DACs are operating at the same sample rate. Digital data from either left or right ADC can be mixed with the audio interface data on the left and right DAC channels. Sidetone data is taken from the ADC high pass filter output, to reduce low frequency noise in the sidetone (e.g. wind noise or mechanical vibration).

When using the digital sidetone, it is recommended that the ADCs are enabled before un-muting the DACs to prevent pop noise. The DAC volumes and sidetone volumes should be set to an appropriate level to avoid clipping at the DAC input.

The digital sidetone is controlled as shown in Table 17.

REGISTER ADDRESS	BIT	LABEL	DEFAULT	DESCRIPTION
R13 (0Dh)	12:9	ADCL_DAC_SVOL	0000	Left Digital Sidetone Volume
Digital Side		[3:0]		0000 = -36dB
Tone				0001 = -33dB
				(3dB steps)
				1011 = -3dB
				1100 = 0dB
				(See Table 18 for volume range)
1	8:5	ADCR_DAC_SVOL	0000	Right Digital Sidetone Volume
		[3:0]		0000 = -36dB
				0001 = -33dB
				(3dB steps)
				1011 = -3dB
				1100 = 0dB
				(See Table 18 for volume range)
	3:2	ADCL_TO_DACL	00	Left DAC Digital Sidetone Source
		[1:0]		00 = No sidetone
				01 = Left ADC
				10 = Right ADC
				11 = Reserved
	1:0	ADC_TO_DACR	00	Right DAC Digital Sidetone Source
		[1:0]		00 = No sidetone
				01 = Left ADC
				10 = Right ADC
				11 = Reserved
able 47 Divite				

Table 17 Digital Sidetone Control

ADCL_DAC_SVOL or ADCR_DAC_SVOL	SIDETONE VOLUME (dB)
0000	-36
0001	-33
0010	-30
0011	-27
0100	-24
0101	-21
0110	-18
0111	-15
1000	-12
1001	-9
1010	-6
1011	-3
1100	0
1101	0
1110	0
1111	0

Table 18 Digital Sidetone Volume

DYNAMIC RANGE CONTROL (DRC)

The dynamic range controller (DRC) is a circuit which can be enabled in the digital data path of either the ADCs or the DACs. The function of the DRC is to adjust the signal gain in conditions where the input amplitude is unknown or varies over a wide range, e.g. when recording from microphones built into a handheld system. The DRC can apply Compression and Automatic Level Control to the signal path. It incorporates 'anti-clip' and 'quick release' features for handling transients in order to improve intelligibility in the presence of loud impulsive noises.

The DRC is enabled as shown in Table 19. It can be enabled in the ADC digital path or in the DAC digital path, under the control of the DRC_DAC_PATH register bit. Note that the DRC can only be active in one of these paths at any time.

REGISTER ADDRESS	BIT	LABEL	DEFAULT	DESCRIPTION
R123 (7Bh)	15	DRC_ENA	0	DRC enable
DRC Control 1				0 = disabled
				1 = enabled
	14	DRC_DAC_PAT	0	DRC path select
		н		0 = ADC path
				1 = DAC path

Table 19 DRC Enable

COMPRESSION/LIMITING CAPABILITIES

The DRC supports two different compression regions, specified by R0 and R1, separated by a "knee" at input amplitude T. For signals above the knee, the compression slope R0 applies; for signals below the knee, the compression slope R1 applies.

The overall DRC compression characteristic in "steady state" (i.e. where the input amplitude is nearconstant) is illustrated in Figure 15.

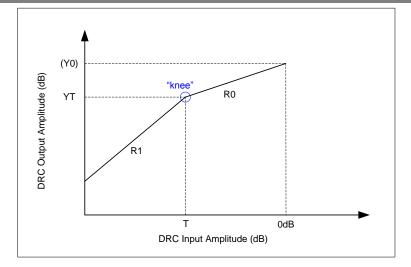


Figure 15 DRC Compression Characteristic

The slope of R0 and R1 are determined by register fields DRC_R0_SLOPE_COMP and DRC_R1_SLOPE_COMP respectively. A slope of 1 indicates constant gain in this region. A slope less than 1 represents compression (i.e. a change in input amplitude produces only a smaller change in output amplitude). A slope of 0 indicates that the target output amplitude is the same across a range of input amplitudes; this is infinite compression.

The "knee" in Figure 15 is represented by T and Y, which are determined by register fields DRC_THRESH_COMP and DRC_AMP_COMP respectively.

Parameter Y0, the output level for a 0dB input, is not specified directly, but can be calculated from the other parameters, using the equation

$$Y0 = YT - (T * R0)$$

REGISTER ADDRESS	BIT	LABEL	DEFAULT	DESCRIPTION
R124 (7Ch) DRC Control 2	7:2	DRC_THRESH_ COMP [5:0]	000000	Compressor threshold T (dB) 000000 = 0dB 000001 = -0.75dB 000010 = -1.5dB (-0.75dB steps) 111100 = -45dB 111101 = Reserved
				11111X = Reserved

The DRC Compression parameters are defined in Table 20.

REGISTER ADDRESS	BIT	LABEL	DEFAULT	DESCRIPTION
R125 (7Dh) DRC Control 3	15:11	DRC_AMP_CO MP [4:0]	00000	Compressor amplitude at threshold YT (dB)
				00000 = 0dB
				00001 = -0.75dB
				00010 = -1.5dB
				(-0.75dB steps)
				11110 = -22.5dB
				11111 = Reserved
	10:8	DRC_R0_SLOP	100	Compressor slope R0
		E_COMP [2:0]		000 = 1 (no compression)
				001 = 1/2
				010 = 1/4
				011 = 1/8
				100 = 1/16
				101 = 0
				110 = Reserved
				111 = Reserved
R126 (7Eh)	15:13	DRC_R1_SLOP	000	Compressor slope R1
DRC Control 4		E_COMP [2:0]		000 = 1 (no compression)
				001 = 1/2
				010 = 1/4
				011 = 1/8
				100 = 0
				101 = Reserved
				11X = Reserved

Table 20 DRC Compression Control

GAIN LIMITS

The minimum and maximum gain applied by the DRC is set by register fields DRC_MINGAIN and DRC_MAXGAIN. These limits can be used to alter the DRC response from that illustrated in Figure 15. If the range between maximum and minimum gain is reduced, then the extent of the dynamic range control is reduced. The maximum gain prevents quiet signals (or silence) from being excessively amplified.

REGISTER ADDRESS	BIT	LABEL	DEFAULT	DESCRIPTION
R123 (7Bh) DRC Control 1	3:2	DRC_MINGAIN [1:0]	00	Minimum gain the DRC can use to attenuate audio signals 00 = 0dB (default) 01 = -6dB 10 = -12dB 11 = -18dB
	1:0	DRC_MAXGAIN [1:0]	01	Maximum gain the DRC can use to boost audio signals 00 = 12dB 01 = 18dB (default) 10 = 24dB 11 = 36dB

Table 21 DRC Gain Limits

DYNAMIC CHARACTERISTICS

The dynamic behaviour determines how quickly the DRC responds to changing signal levels. Note that the DRC responds to the average (RMS) signal amplitude over a period of time.

The DRC_ATTACK_RATE determines how quickly the DRC gain decreases when the signal amplitude is high. The DRC_DECAY_RATE determines how quickly the DRC gain increases when the signal amplitude is low.

These register fields are described in Table 22. For general purpose microphone use, the settings DRC_ATTACK_RATE = 0100 and DRC_DECAY_RATE = 0010 are suitable for many applications. Note that the default setting of DRC_ATTACK_RATE is Reserved and should not be used.

REGISTER ADDRESS	BIT	LABEL	DEFAULT	DESCRIPTION
R124 (7Ch)	15:12	DRC_ATTACK_	0000	Gain attack rate (seconds/6dB)
DRC Control 2		RATE [3:0]		0000 = Reserved
				0001 = 181us
				0010 = 363us
				0011 = 726us
				0100 = 1.45ms
				0101 = 2.9ms
				0110 = 5.8ms
				0111 = 11.6ms
				1000 = 23.2ms
				1001 = 46.4ms
				1010 = 92.8ms
				1011 = 185.6ms
				1100-1111 = Reserved
	11:8	DRC_DECAY_R	0000	Gain decay rate (seconds/6dB)
		ATE [3:0]		0000 = 186ms
				0001 = 372ms
				0010 = 743ms
				0011 = 1.49s
				0100 = 2.97s
				0101 = 5.94s
				0110 = 11.89s
				0111 = 23.78s
				1000 = 47.56s
				1001-1111 = Reserved

Table 22 DRC Time Constants

ANTI-CLIP CONTROL

The DRC includes an Anti-Clip feature to avoid signal clipping when the input amplitude rises very quickly. This feature uses a feed-forward technique for early detection of a rising signal level. Signal clipping is avoided by dynamically increasing the gain attack rate when required. The Anti-Clip feature is enabled using the DRC_ANTICLIP_ENA bit.

Note that the feed-forward processing increases the latency in the input signal path. For low-latency applications (e.g. telephony), it may be desirable to reduce the delay, although this will also reduce the effectiveness of the anti-clip feature. The latency is determined by the DRC_FF_DELAY bit. If necessary, the latency can be minimised by disabling the anti-clip feature altogether.

The DRC Anti-Clip control bits are described in Table 23.

REGISTER ADDRESS	BIT	LABEL	DEFAULT	DESCRIPTION
R125 (7Dh) DRC Control 3	7	DRC_FF_DELAY	1	Feed-forward delay for anti-clip feature
				0 = 5 samples
				1 = 9 samples
				Time delay can be calculated as $5/f_s$ or 9/ f_s , where f_s is the sample rate.
R123 (7Bh)	9	DRC_ANTICLIP_	1	Anti-clip enable
DRC Control 1		ENA		0 = disabled
				1 = enabled

Table 23 DRC Anti-Clip Control

Note that the Anti-Clip feature operates entirely in the digital domain. It cannot be used to prevent signal clipping in the analogue domain nor in the source signal. Analogue clipping can only be prevented by reducing the analogue signal gain or by adjusting the source signal.

QUICK RELEASE CONTROL

The DRC includes a Quick-Release feature to handle short transient peaks that are not related to the intended source signal. For example, in handheld microphone recording, transient signal peaks sometimes occur due to user handling, key presses or accidental tapping against the microphone. The Quick Release feature ensures that these transients do not cause the intended signal to be masked by the longer time constants of DRC_DECAY_RATE.

The Quick-Release feature is enabled by setting the DRC_QR_ENA bit. When this bit is enabled, the DRC measures the crest factor (peak to RMS ratio) of the input signal. A high crest factor is indicative of a transient peak that may not be related to the intended source signal. If the crest factor exceeds the level set by DRC_THRESH_QR, then the normal decay rate (DRC_DECAY_RATE) is ignored and a faster decay rate (DRC_RATE_QR) is used instead.

REGISTER ADDRESS	BIT	LABEL	DEFAULT	DESCRIPTION
R123 (7Bh)	10	DRC_QR_ENA	1	Quick release enable
DRC Control 1				0 = disabled
				1 = enabled
R125 (7Dh)	3:2	DRC_THRESH_	01	Quick release crest factor threshold
DRC Control 3		QR [1:0]		00 = 12dB
				01 = 18dB (default)
				10 = 24dB
				11 = 30dB
	1:0	DRC_RATE_QR [1:0]	00	Quick release decay rate (seconds/6dB)
				00 = 0.725ms (default)
				01 = 1.45ms
				10 = 5.8ms
				11 = Reserved

The DRC Quick-Release control bits are described in Table 24.

Table 24 DRC Quick-Release Control

GAIN SMOOTHING

The DRC includes a gain smoothing filter in order to prevent gain ripples. A programmable level of hysteresis is also used to control the DRC gain. This improves the handling of very low frequency input signals whose period is close to the DRC attack/decay time. DRC Gain Smoothing is enabled by default and it is recommended to use the default register settings.

The extent of the gain smoothing filter may be adjusted or disabled using the control fields described in Table 25.

REGISTER ADDRESS	BIT	LABEL	DEFAULT	DESCRIPTION
R123 (7Bh)	11	DRC_SMOOTH_ ENA	1	Gain smoothing enable
DRC Control 1		LINA		0 = disabled 1 = enabled
	8	DRC_HYST_EN	1	Gain smoothing hysteresis enable
		А		0 = disabled
				1 = enabled
	5:4	DRC_THRESH_ HYST [1:0]	01	Gain smoothing hysteresis threshold
				00 = Low
				01 = Medium (recommended)
				10 = High
				11 = Reserved

Table 25 DRC Gain Smoothing

INITIALISATION

When the DRC is initialised, the gain is set to the level determined by the DRC_STARTUP_GAIN register field. The default setting is 0dB, but values from -3dB to +6dB are available, as described in Table 26.

REGISTER ADDRESS	BIT	LABEL	DEFAULT	DESCRIPTION
R126 (7Eh)	12:8	DRC_STARTUP_	00110	Initial gain at DRC startup
DRC Control 4		GAIN [4:0]		00000 = -18dB
				00001 = -15dB
				00010 = -12dB
				00011 = -9dB
				00100 = -6dB
				00101 = -3dB
				00110 = 0dB (default)
				00111 = 3dB
				01000 = 6dB
				01001 = 9dB
				01010 = 12dB
				01011 = 15dB
				01100 = 18dB
				01101 = 21dB
				01110 = 24dB
				01111 = 27dB
				10000 = 30dB
				10001 = 33dB
				10010 = 36dB
				10011 to 11111 = Reserved

Table 26 DRC Initialisation

RETUNE MOBILE PARAMETRIC EQUALIZER (EQ)

The ReTune Mobile Parametric EQ is a circuit which can be enabled in the DAC path. The function of the EQ is to adjust the frequency characteristic of the output in order to compensate for unwanted frequency characteristics in the loudspeaker (or other output transducer). It can also be used to tailor the response according to user preferences, for example to accentuate or attenuate specific frequency bands to emulate different sound profiles or environments e.g. concert hall, rock etc.

The EQ is enabled as shown in Table 27.

REGISTER ADDRESS	BIT	LABEL	DEFAULT	DESCRIPTION
R98 (62h)	0	EQ_ENA	0b	EQ Enable
EQ1				0 = EQ disabled
				1 = EQ enabled

Table 27 ReTune Mobile Parametric EQ Enable

The EQ can be configured to operate in two modes - "Default" mode or "ReTune Mobile" mode.

DEFAULT MODE (5-BAND PARAMETRIC EQ)

In default mode, the cut-off / centre frequencies are fixed as per Table 28. The filter bandwidths are also fixed in default mode. The gain of the individual bands (-12dB to +12dB) can be controlled as described in Table 29.

Note that the cut-off / centre frequencies noted in Table 28 are applicable to a DAC Sample Rate of 48kHz. When using other sample rates, these frequencies will be scaled in proportion to the selected sample rate.

EQ BAND	CUT-OFF/CENTRE FREQUENCY		
1	100 Hz		
2	300 Hz		
3	875 Hz		
4	2400 Hz		
5	6900 Hz		

Table 28 EQ Band Cut-off / Centre Frequencies

REGISTER ADDRESS	BIT	LABEL	DEFAULT	DESCRIPTION
R99 (63h)	4:0	EQ_B1_GAIN	01100b	EQ Band 1 Gain
EQ2		[4:0]	(0dB)	-12dB to +12dB in 1dB steps
				(see Table 30 for gain range)
R100 (64h)	4:0	EQ_B2_GAIN	01100b	EQ Band 2 Gain
EQ3		[4:0]	(0dB)	-12dB to +12dB in 1dB steps
				(see Table 30 for gain range)
R101 (65h)	4:0	EQ_B3_GAIN	01100b	EQ Band 3 Gain
EQ4		[4:0]	(0dB)	-12dB to +12dB in 1dB steps
				(see Table 30 for gain range)
R102 (66h)	4:0	EQ_B4_GAIN	N 01100b EQ Band 4 Gain	
EQ5		[4:0]	(0dB)	-12dB to +12dB in 1dB steps
				(see Table 30 for gain range)
R103 (67h)	4:0	EQ_B5_GAIN	01100b	EQ Band 5 Gain
EQ6		[4:0]	(0dB)	-12dB to +12dB in 1dB steps
				(see Table 30 for gain range)

Table 29 EQ Band Gain Control

EQ GAIN SETTING	GAIN (DB)
00000	-12
00001	-11
00010	-10
00011	-9
00100	-8
00101	-7
00110	-6
00111	-5
01000	-4
01001	-3
01010	-2
01011	-1
01100	0
01101	+1
01110	+2
01111	+3
10000	+4
10001	+5
10010	+6
10011	+7
10100	+8
10101	+9
10110	+10
10111	+11
11000	+12
11001 to 11111	Reserved

Table 30 EQ Gain Control

RETUNE MOBILE MODE

ReTune Mobile mode provides a comprehensive facility for the user to define the cut-off/centre frequencies and filter bandwidth for each EQ band, in addition to the gain controls already described. This enables the EQ to be accurately customised for a specific transducer characteristic or desired sound profile.

The EQ enable and EQ gain controls are the same as defined for the default mode. The additional coefficients used in ReTune Mobile mode are held in registers R104 to R121. These coefficients are derived using tools provided in WISCE™ evaluation board control software.

Please contact your local Cirrus Logic representative for more details.

EQ FILTER CHARACTERISTICS

The filter characteristics for each frequency band are shown in Figure 16 to Figure 20. These figures show the frequency response for all available gain settings, using default cut-off/centre frequencies and bandwidth.

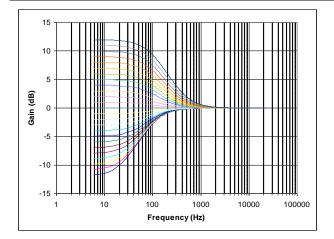


Figure 16 EQ Band 1 – Low Freq Shelf Filter Response

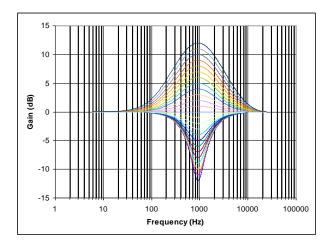


Figure 18 EQ Band 3 – Peak Filter Response

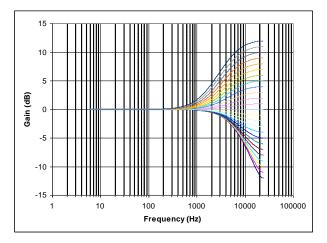


Figure 20 EQ Band 5 – High Freq Shelf Filter Response

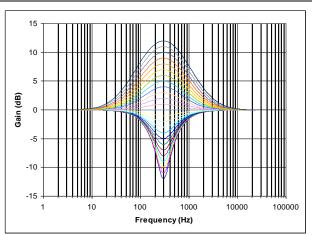


Figure 17 EQ Band 2 – Peak Filter Response

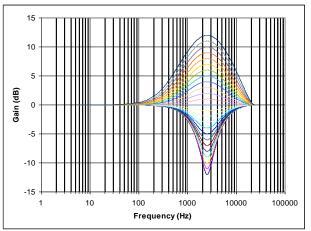


Figure 19 EQ Band 4 – Peak Filter Response

DIGITAL TO ANALOGUE CONVERTER (DAC)

The WM8993 DACs receive digital input data from the DACDAT pin and via the digital sidetone path. The digital audio data is converted to oversampled bit streams in the on-chip, true 24-bit digital interpolation filters. The bitstream data enters two multi-bit, sigma-delta DACs, which convert them to high quality analogue audio signals. The multi-bit DAC architecture reduces high frequency noise and sensitivity to clock jitter. It also uses a Dynamic Element Matching technique for high linearity and low distortion.

The analogue outputs from the DACs can be mixed with analogue line/mic inputs using the line output mixers MIXOUTL / MIXOUTR and the speaker output mixers SPKMIXL / SPKMIXR.

The DACs are enabled by the DACL_ENA and DACR_ENA register bits.

Note that the CLK_DSP clock must be enabled and present whenever the DACs are enabled. See "Clocking and Sample Rates" for details of this clock.

REGISTER ADDRESS	BIT	LABEL	DEFAULT	DESCRIPTION
R3 (03h)	1	DACL_ENA	0	Left DAC Enable
Power				0 = DAC disabled
Management (3)				1 = DAC enabled
	0	DACR_ENA	0	Right DAC Enable
				0 = DAC disabled
				1 = DAC enabled

Table 31 DAC Enable Control

DAC DIGITAL VOLUME CONTROL

The output level of each DAC can be controlled digitally over a range from -71.625dB to 0dB in 0.375dB steps. The level of attenuation for an eight-bit code X is given by:

 $0.375 \times (X-192) \text{ dB}$ for $1 \le X \le 192$; MUTE for X = 0 0 dB for $192 \le X \le 255$

The DAC_VU bit controls the loading of digital volume control data. When DAC_VU is set to 0, the DACL_VOL or DACR_VOL control data will be loaded into the respective control register, but will not actually change the digital gain setting. Both left and right gain settings are updated when a 1 is written to DAC_VU. This makes it possible to update the gain of both channels simultaneously.

REGISTER ADDRESS	BIT	LABEL	DEFAULT	DESCRIPTION
R11 (0Bh)	8	DAC_VU	N/A	DAC Volume Update
Left DAC Digital Volume				Writing 1 causes the left and right DAC volume to be updated simultaneously
	7:0	DACL_VOL	1100_0000	Left DAC Digital Volume
		[7:0]	(0dB)	00h = MUTE
				01h = -71.625dB
				(0.375dB steps)
				C0h = 0dB
				(See Table 33 for volume range)
R12 (0Ch)	8	DAC_VU	N/A	DAC Volume Update
Right DAC Digital Volume				Writing 1 causes the left and right DAC volume to be updated simultaneously
	7:0	DACR_VOL	1100_0000	Right DAC Digital Volume
		[7:0]	(0dB)	00h = MUTE
				01h = -71.625dB
				(0.375dB steps)
				C0h = 0dB
				(See Table 33 for volume range)

Table 32 DAC Digital Volume Control

DACL_VOL or		DACL_VOL or		DACL_VOL or		DACL_VOL or	
DACR_VOL	Volume (dB)	DACR_VOL	Volume (dB)	DACR_VOL	Volume (dB)	DACR_VOL	Volume (dB)
0h	MUTE	40h	-48.000	80h	-24.000	C0h	0.000
1h	-71.625	41h	-47.625	81h	-23.625	C1h	0.000
2h	-71.250	42h	-47.250	82h	-23.250	C2h	0.000
3h	-70.875	43h	-46.875	83h	-22.875	C3h	0.000
4h	-70.500	44h	-46.500	84h	-22.500	C4h	0.000
5h	-70.125	45h	-46.125	85h	-22.125	C5h	0.000
6h 7h	-69.750 -69.375	46h 47h	-45.750 -45.375	86h 87h	-21.750	C6h C7h	0.000 0.000
8h	-69.000	48h	-45.000	88h	-21.375 -21.000	C8h	0.000
9h	-68.625	49h	-44.625	89h	-20.625	C9h	0.000
Ah	-68.250	43h	-44.250	8Ah	-20.250	CAh	0.000
Bh	-67.875	4Bh	-43.875	8Bh	-19.875	CBh	0.000
Ch	-67.500	4Ch	-43.500	8Ch	-19.500	CCh	0.000
Dh	-67.125	4Dh	-43.125	8Dh	-19.125	CDh	0.000
Eh	-66.750	4Eh	-42.750	8Eh	-18.750	CEh	0.000
Fh	-66.375	4Fh	-42.375	8Fh	-18.375	CFh	0.000
10h	-66.000	50h	-42.000	90h	-18.000	D0h	0.000
11h	-65.625	51h	-41.625	91h	-17.625	D1h	0.000
12h	-65.250	52h	-41.250	92h	-17.250	D2h	0.000
13h	-64.875	53h	-40.875	93h	-16.875	D3h	0.000
14h	-64.500	54h	-40.500	94h	-16.500	D4h	0.000
15h	-64.125	55h	-40.125	95h	-16.125	D5h	0.000
16h	-63.750	56h	-39.750	96h	-15.750	D6h	0.000
17h	-63.375	57h	-39.375	97h	-15.375	D7h	0.000
18h	-63.000	58h	-39.000	98h	-15.000	D8h	0.000 0.000
19h 1Ah	-62.625 -62.250	59h 5Ah	-38.625 -38.250	99h 9Ah	-14.625 -14.250	D9h DAh	0.000
1Bh	-61.875	5Bh	-37.875	9Bh	-13.875	DBh	0.000
1Ch	-61.500	5Ch	-37.500	9Ch	-13.500	DCh	0.000
1Dh	-61.125	5Dh	-37.125	9Dh	-13.125	DDh	0.000
1Eh	-60.750	5Eh	-36.750	9Eh	-12.750	DEh	0.000
1Fh	-60.375	5Fh	-36.375	9Fh	-12.375	DFh	0.000
20h	-60.000	60h	-36.000	A0h	-12.000	E0h	0.000
21h	-59.625	61h	-35.625	A1h	-11.625	E1h	0.000
22h	-59.250	62h	-35.250	A2h	-11.250	E2h	0.000
23h	-58.875	63h	-34.875	A3h	-10.875	E3h	0.000
24h	-58.500	64h	-34.500	A4h	-10.500	E4h	0.000
25h	-58.125	65h	-34.125	A5h	-10.125	E5h	0.000
26h	-57.750	66h	-33.750	A6h	-9.750	E6h	0.000
27h	-57.375	67h	-33.375	A7h	-9.375	E7h	0.000
28h	-57.000	68h	-33.000	A8h	-9.000	E8h	0.000
29h	-56.625	69h	-32.625	A9h	-8.625	E9h	0.000
2Ah	-56.250	6Ah	-32.250	AAh	-8.250	EAh	0.000
2Bh 2Ch	-55.875 -55.500	6Bh 6Ch	-31.875 -31.500	ABh ACh	-7.875 -7.500	EBh ECh	0.000 0.000
2Dh	-55.125	6Dh	-31.125	ADh	-7.125	EDh	0.000
2Eh	-54.750	6Eh	-30.750	AEh	-6.750	EEh	0.000
2Fh	-54.375	6Fh	-30.375	AFh	-6.375	EFh	0.000
30h	-54.000	70h	-30.000	B0h	-6.000	F0h	0.000
31h	-53.625	71h	-29.625	B1h	-5.625	F1h	0.000
32h	-53.250	72h	-29.250	B2h	-5.250	F2h	0.000
33h	-52.875	73h	-28.875	B3h	-4.875	F3h	0.000
34h	-52.500	74h	-28.500	B4h	-4.500	F4h	0.000
35h	-52.125	75h	-28.125	B5h	-4.125	F5h	0.000
36h	-51.750	76h	-27.750	B6h	-3.750	F6h	0.000
37h	-51.375	77h	-27.375	B7h	-3.375	F7h	0.000
38h	-51.000	78h	-27.000	B8h	-3.000	F8h	0.000
39h	-50.625	79h	-26.625	B9h	-2.625	F9h	0.000
3Ah	-50.250	7Ah	-26.250	BAh	-2.250	FAh	0.000
3Bh	-49.875	7Bh	-25.875	BBh	-1.875	FBh	0.000
3Ch	-49.500	7Ch	-25.500	BCh	-1.500	FCh	0.000
3Dh 3Eb	-49.125	7Dh 7Eb	-25.125	BDh	-1.125	FDh	0.000
3Eh 3Eh	-48.750 -48.375	7Eh 7Eh	-24.750 -24.375	BEh BEb	-0.750 -0.375	FEh	0.000
3Fh	-48.375	7Fh	-24.375	BFh	-0.375	FFh	0.000

Table 33 DAC Digital Volume Range

DAC SOFT MUTE AND SOFT UN-MUTE

The WM8993 has a soft mute function which, when enabled, gradually attenuates the volume of the DAC output. When soft mute is disabled, the gain will either gradually ramp back up to the digital gain setting, or return instantly to the digital gain setting, depending on the DAC_UNMUTE_RAMP register bit.

The DAC is soft-muted by default (DAC_MUTE = 1). To play back an audio signal, this function must first be disabled by setting DAC_MUTE to 0.

Soft Mute Mode would typically be enabled (DAC_UNMUTE_RAMP = 1) when using DAC_MUTE during playback of audio data so that when DAC_MUTE is subsequently disabled, the sudden volume increase will not create pop noise by jumping immediately to the previous volume level (e.g. resuming playback after pausing during a track).

Soft Mute Mode would typically be disabled (DAC_UNMUTE_RAMP = 0) when un-muting at the start of a music file, in order that the first part of the track is not attenuated (e.g. when starting playback of a new track, or resuming playback after pausing between tracks).

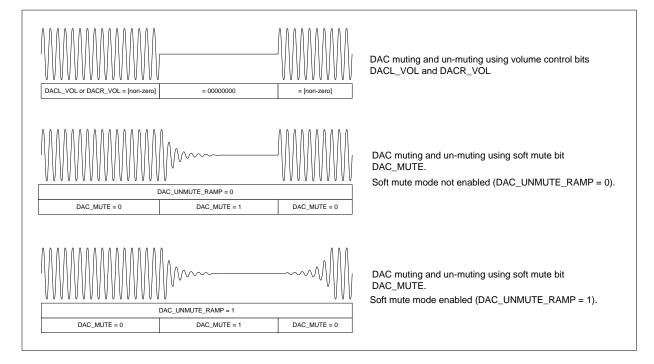


Figure 21 DAC Soft Mute Control

The volume ramp rate during soft mute and un-mute is controlled by the DAC_MUTERATE bit. Ramp rates of fs/32 and fs/2 are selectable as shown in Table 34. The ramp rate determines the rate at which the volume will be increased or decreased. The actual ramp time depends on the extent of the difference between the muted and un-muted volume settings.

REGISTER ADDRESS	BIT	LABEL	DEFAULT	DESCRIPTION
R10 (0Ah)	7	DAC_MUTERATE	0	DAC Soft Mute Ramp Rate
DAC CTRL				0 = Fast ramp (fs/2, maximum ramp time is 10.7ms at fs=48k)
				1 = Slow ramp (fs/32, maximum ramp time is 171ms at fs=48k)
				(Note: ramp rate scales with sample rate.)
	6	DAC_UNMUTE_RAMP	0	DAC Unmute Ramp select
				0 = Disabling soft-mute (DAC_MUTE=0) will cause the DAC volume to change immediately to DACL_VOL and DACR_VOL settings
				1 = Disabling soft-mute (DAC_MUTE=0) will cause the DAC volume to ramp up gradually to the DACL_VOL and DACR_VOL settings
	2	DAC_MUTE	1	DAC Soft Mute Control
				0 = DAC Un-mute
				1 = DAC Mute

Table 34 DAC Soft-Mute Control

DAC MONO MIX

A DAC digital mono-mix mode can be enabled using the DAC_MONO register bit. The mono mix is generated as the sum of the Left and Right channel DAC data. To prevent clipping, a -6dB attenuation is automatically applied to the mono mix.

The mono mix is only supported when one or other DAC is disabled. If DACL_ENA and DACR_ENA are both set, then stereo operation applies.

REGISTER ADDRESS	BIT	LABEL	DEFAULT	DESCRIPTION
R10 (0Ah)	9	DAC_MONO	0	DAC Mono Mix
DAC CTRL				0 = Disabled
				1 = Enabled
				Only valid when one or other DAC is disabled.

Table 35 DAC Mono Mix

DAC DE-EMPHASIS

Digital de-emphasis can be applied to the DAC playback data; this is appropriate when the data source is a CD where pre-emphasis is used in the recording. De-emphasis filtering is available for sample rates of 48kHz, 44.1kHz and 32kHz. See "Digital Filter Characteristics" section for details of de-emphasis filter characteristics.

REGISTER ADDRESS	BIT	LABEL	DEFAULT	DESCRIPTION
R10 (0Ah)	5:4	DEEMPH	00	DAC De-Emphasis Control
DAC CTRL		[1:0]		00 = No de-emphasis
				01 = 32kHz sample rate
				10 = 44.1kHz sample rate
				11 = 48kHz sample rate

Table 36 DAC De-Emphasis Control

DAC SLOPING STOPBAND FILTER

Two DAC filter types are available, selected by the register bit DAC_SB_FILT. When operating at lower sample rates (e.g. during voice communication) it is recommended that the sloping stopband filter type is selected (DAC_SB_FILT=1) to reduce out-of-band noise which can be audible at low DAC sample rates. See "Digital Filter Characteristics" section for details of DAC filter characteristics.

The DAC filter type is determined automatically by the WM8993 in Automatic Clocking Configuration mode. The DAC_SB_FILT register bit is only effective in Manual Clocking Configuration mode. See "Clocking and Sample Rates" for details of the Clocking Configuration mode selection.

REGISTER ADDRESS	BIT	LABEL	DEFAULT	DESCRIPTION
R10 (0Ah) DAC CTRL	8	DAC_SB_FILT	0	Selects DAC filter characteristics 0 = Normal mode 1 = Sloping stopband mode Note - this field is ignored and invalid in Automatic Clocking Configuration mode.

Table 37 DAC Sloping Stopband Filter

OUTPUT SIGNAL PATH

The WM8993 output routing and mixers provide a high degree of flexibility, allowing operation of many simultaneous signal paths through the device to a variety of analogue outputs. The outputs include a ground referenced headphone driver, two switchable class D/AB loudspeaker drivers, an ear speaker driver and four highly flexible line drivers. See "Analogue Outputs" for further details of these outputs.

The WM8993 output signal paths and control registers are illustrated in Figure 22.

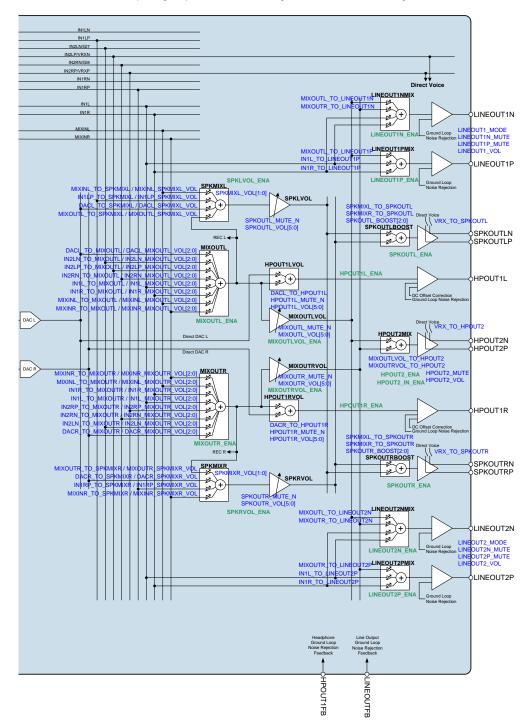


Figure 22 Control Registers for Output Signal Path

OUTPUT SIGNAL PATHS ENABLE

The output mixers and drivers can be independently enabled and disabled as described in Table 38.

Note that the headphone outputs HPOUT1L and HPOUT1R have dedicated output PGAs and volume controls. As a result, a low power consumption DAC playback path can be supported without needing to enable the output mixers MIXOUTL / MIXOUTR or the mixer output PGAs MIXOUTLVOL / MIXOUTRVOL.

REGISTER ADDRESS	BIT	LABEL	DEFAULT	DESCRIPTION
R1 (01h) Power	13	SPKOUTR_ENA	0b	SPKMIXR Mixer, SPKRVOL PGA and SPKOUTR Output Enable
Management				0 = Disabled
(1)				1 = Enabled
	12	SPKOUTL_ENA	0b	SPKMIXL Mixer, SPKLVOL PGA and SPKOUTL Output Enable
				0 = Disabled
				1 = Enabled
	11	HPOUT2_ENA	0b	HPOUT2 Output Stage Enable
				0 = Disabled
				1 = Enabled
	9	HPOUT1L_ENA	0b	Enables HPOUT1L input stage
				0 = Disabled
				1 = Enabled
				Note: When HPOUT1_AUTO_PU is set, the HPOUT1L_ENA bit automatically enables all stages of
				the left headphone driver
	8	HPOUT1R_ENA	0b	Enables HPOUT1R input stage
				0 = Disabled
				1 = Enabled
				Note: When HPOUT1_AUTO_PU is set, the HPOUT1R_ENA bit
				automatically enables all stages of the right headphone driver
R3 (03h) Power	13	LINEOUT1N_ENA	0b	LINEOUT1N Line Out and LINEOUT1NMIX Enable
Management				0 = Disabled
(3)				1 = Enabled
	12	LINEOUT1P_ENA	0b	LINEOUT1P Line Out and LINEOUT1PMIX Enable
				0 = Disabled
				1 = Enabled
	11	LINEOUT2N_ENA	0b	LINEOUT2N Line Out and LINEOUT2NMIX Enable
				0 = Disabled
				1 = Enabled
	10	LINEOUT2P_ENA	0b	LINEOUT2P Line Out and LINEOUT2PMIX Enable
				0 = Disabled
				1 = Enabled
	9	SPKRVOL_ENA	0b	SPKMIXR Mixer and SPKRVOL PGA Enable
				0 = Disabled
				1 = Enabled
				Note that SPKMIXR and SPKRVOL
				are also enabled when SPKOUTR_ENA is set.

REGISTER ADDRESS	BIT	LABEL	DEFAULT	DESCRIPTION
	8	SPKLVOL_ENA	0b	SPKMIXL Mixer and SPKLVOL PGA Enable
				0 = Disabled
				1 = Enabled
				Note that SPKMIXL and SPKLVOL
				are also enabled when SPKOUTL_ENA is set.
	7	MIXOUTLVOL_ENA	0b	MIXOUTL Left Volume Control Enable
				0 = Disabled
				1 = Enabled
	6	MIXOUTRVOL_ENA	0b	MIXOUTR Right Volume Control Enable
				0 = Disabled
				1 = Enabled
	5	MIXOUTL_ENA	0b	MIXOUTL Left Output Mixer Enable
				0 = Disabled
				1 = Enabled
	4	MIXOUTR_ENA	0b	MIXOUTR Right Output Mixer Enable
				0 = Disabled
				1 = Enabled
R56 (38h) AntiPOP1	6	HPOUT2_IN_ENA	0b	HPOUT2MIX Mixer and Input Stage Enable
				0 = Disabled
				1 = Enabled

 Table 38 Output Signal Paths Enable

HEADPHONE SIGNAL PATHS ENABLE

The HPOUT1L and HPOUT1R output paths can be actively discharged to AGND through internal resistors if desired. This is desirable at start-up in order to achieve a known output stage condition prior to enabling the VMID reference voltage. This is also desirable in shutdown to prevent the external connections from being affected by the internal circuits. The HPOUT1L and HPOUT1R outputs are shorted to AGND by default; the short circuit is removed on each of these paths by setting the applicable fields HPOUT1L_RMV_SHORT or HPOUT1R_RMV_SHORT.

The ground-referenced Headphone output drivers are designed to suppress pops and clicks when enabled or disabled. However, it is necessary to control the drivers in accordance with a defined sequence in start-up and shut-down to achieve the pop suppression. It is also necessary to schedule the DC Servo offset correction at the appropriate point in the sequence (see "DC Servo"). Table 39 and Table 40 describe the recommended sequences for enabling and disabling these output drivers.

SEQUENCE	HEADPHONE ENABLE
Step 1	HPOUT1L_ENA = 1
	HPOUT1R_ENA = 1
Step 2	20μs delay
Step 3	HPOUT1L_DLY = 1
	HPOUT1R_DLY = 1
Step 4	DC offset correction
Step 5	HPOUT1L_OUTP = 1
	HPOUT1L_RMV_SHORT = 1
	HPOUT1R_OUTP = 1
	HPOUT1R_RMV_SHORT = 1

Table 39 Headphone Output Enable Sequence

SEQUENCE	HEADPHONE DISABLE
Step 1	HPOUT1L_RMV_SHORT = 0
	$HPOUT1L_DLY = 0$
	$HPOUT1L_OUTP = 0$
	HPOUT1R_RMV_SHORT = 0
	$HPOUT1R_DLY = 0$
	$HPOUT1R_OUTP = 0$
Step 2	$HPOUT1L_ENA = 0$
	HPOUT1R_ENA = 0

Table 40 Headphone Output Disable Sequence

The sequences described above in Table 39 and Table 40 are implemented automatically by the WM8993 when the HPOUT1_AUTO_PU bit is set, which is the default condition. In this mode, the enable sequence is triggered by setting the HPOUT1L_ENA and HPOUT1R_ENA bits in register R1. Note that the Charge Pump is also enabled automatically in this mode.

The register bits relating to pop suppression control are defined in Table 41.

REGISTER ADDRESS	BIT	LABEL	DEFAULT	DESCRIPTION
R1 (01h)	9	HPOUT1L_ENA	0b	Enables HPOUT1L input stage
Power				0 = Disabled
Management				1 = Enabled
(1)				For normal operation, this bit should be set as the first step of the HPOUT1L Enable sequence.
				Note: When HPOUT1_AUTO_PU is set, the HPOUT1L_ENA bit automatically enables all stages of the left headphone driver
	8	HPOUT1R_ENA	0b	Enables HPOUT1R input stage
				0 = Disabled
				1 = Enabled
				For normal operation, this bit should be set as the first step of the HPOUT1R Enable sequence.
				Note: When HPOUT1_AUTO_PU is set, the HPOUT1R_ENA bit automatically enables all stages of the right headphone driver
R96 (60h) Analogue HP 0	8	HPOUT1_AUTO_ PU	1b	Enables automatic power-up of HPOUT1 by monitoring HPOUT1L_ENA and HPOUT1R_ENA
				0 = Disabled
				1 = Enabled
	7	HPOUT1L_RMV_	0b	Removes HPOUT1L short
		SHORT		0 = HPOUT1L short enabled
				1 = HPOUT1L short removed
				For normal operation, this bit should be set as the final step of the HPOUT1L Enable sequence.
	6	HPOUT1L_OUTP	0b	Enables HPOUT1L output stage
				0 = Disabled
				1 = Enabled
				For normal operation, this bit should
				be set to 1 after the DC offset cancellation has been scheduled.
				cancenation has been scheduled.

REGISTER ADDRESS	BIT	LABEL	DEFAULT	DESCRIPTION
	5	HPOUT1L_DLY	0b	Enables HPOUT1L intermediate stage
				0 = Disabled
				1 = Enabled
				For normal operation, this bit should be set to 1 after the output signal path has been configured, and before DC offset cancellation is scheduled. This bit should be set with at least 20us delay after HPOUT1L_ENA.
	3	HPOUT1R_RMV_	0b	Removes HPOUT1R short
		SHORT		0 = HPOUT1R short enabled
				1 = HPOUT1R short removed
				For normal operation, this bit should be set as the final step of the HPOUT1R Enable sequence.
	2	HPOUT1R_OUTP	0b	Enables HPOUT1R output stage
				0 = Disabled
				1 = Enabled
				For normal operation, this bit should be set to 1 after the DC offset cancellation has been scheduled.
	1	HPOUT1R_DLY	0b	Enables HPOUT1R intermediate stage
				0 = Disabled
				1 = Enabled
				For normal operation, this bit should
				be set to 1 after the output signal path
				has been configured, and before DC offset cancellation is scheduled. This bit should be set with at least 20us delay after HPOUT1R_ENA.

Table 41 Pop Suppression Control

OUTPUT MIXER CONTROL

The Output Mixer path select and volume controls are described in Table 42 for the Left Channel (MIXOUTL) and Table 43 for the Right Channel (MIXOUTR). The gain of each of input path may be controlled independently in the range described in Table 44. The DAC input levels may also be controlled by the DAC digital volume control - see "Digital to Analogue Converter (DAC)" for further details.

REGISTER ADDRESS	BIT	LABEL	DEFAULT	DESCRIPTION
R45 (2Dh)	5	IN2RN_TO_MIXOUTL	0b	IN2RN to MIXOUTL Mute
Output Mixer1				0 = Mute
				1 = Un-mute
R49 (31h)	8:6	IN2RN_MIXOUTL_VOL	000b	IN2RN to MIXOUTL Volume
Output Mixer5		[2:0]		0dB to -21dB in 3dB steps
				(See Table 44 for Volume Range)
R45 (2Dh)	4	IN2LN_TO_MIXOUTL	0b	IN2LN to MIXOUTL Mute
Output Mixer1				0 = Mute
				1 = Un-mute
R47 (2Fh)	8:6	IN2LN_MIXOUTL_VOL	000b	IN2LN to MIXOUTL Volume
Output Mixer3		[2:0]		0dB to -21dB in 3dB steps
				(See Table 44 for Volume Range)

REGISTER ADDRESS	BIT	LABEL	DEFAULT	DESCRIPTION
R45 (2Dh) Output Mixer1	2	IN1L_TO_MIXOUTL	0b	IN1L PGA Output to MIXOUTL Mute
Output Mixel 1				0 = Mute
				1 = Un-mute
R47 (2Fh) Output Mixer3	2:0	IN1L_MIXOUTL_VOL [2:0]	000b	IN1L PGA Output to MIXOUTL Volume
e alp at time e				0dB to -21dB in 3dB steps
				(See Table 44 for Volume Range)
R45 (2Dh) Output Mixer1	3	IN1R_TO_MIXOUTL	0	IN1R PGA Output to MIXOUTL Mute
				0 = Mute
				1 = Un-mute
R47 (2Fh) Output Mixer3	5:3	IN1R_MIXOUTL_VOL [2:0]	000b	IN1R PGA Output to MIXOUTL Volume
				0dB to -21dB in 3dB steps
				(See Table 44 for Volume Range)
R45 (2Dh)	1	IN2LP_TO_MIXOUTL	0b	IN2LP to MIXOUTL Mute
Output Mixer1				0 = Mute
				1 = Un-mute
R47 (2Fh)	11:9	IN2LP_MIXOUTL_VOL	000b	IN2LP to MIXOUTL Volume
Output Mixer3		[2:0]		0dB to -21dB in 3dB steps
				(See Table 44 for Volume Range)
R45 (2Dh) Output Mixer1	7	MIXINR_TO_MIXOUTL	0b	MIXINR Output (Right ADC bypass) to MIXOUTL Mute
				0 = Mute
				1 = Un-mute
R49 (31h) Output Mixer5	5:3	MIXINR_MIXOUTL_VO L [2:0]	000b	MIXINR Output (Right ADC bypass) to MIXOUTL Volume
				0dB to -21dB in 3dB steps
				(See Table 44 for Volume Range)
R45 (2Dh) Output Mixer1	6	MIXINL_TO_MIXOUTL	0b	MIXINL Output (Left ADC bypass) to MIXOUTL Mute
				0 = Mute
				1 = Un-mute
R49 (31h) Output Mixer5	2:0	MIXINL_MIXOUTL_VOL [2:0]	000b	MIXINL Output (Left ADC bypass) to MIXOUTL Volume
				0dB to -21dB in 3dB steps
				(See Table 44 for Volume Range)
R45 (2Dh)	0	DACL_TO_MIXOUTL	0b	Left DAC to MIXOUTL Mute
Output Mixer1				0 = Mute
				1 = Un-mute
R49 (31h)	11:9	DACL_MIXOUTL_VOL	000b	Left DAC to MIXOUTL Volume
Output Mixer5		[2:0]		0dB to -21dB in 3dB steps
				(See Table 44 for Volume Range)

Table 42 Left Output Mixer (MIXOUTL) Control

REGISTER ADDRESS	BIT	LABEL	DEFAULT	DESCRIPTION
R46 (2Eh) Output Mixer2	5	IN2LN_TO_MIXOUTR	0b	IN2LN to MIXOUTR Mute 0 = Mute
				1 = Un-mute
R50 (32h)	8:6	IN2LN_MIXOUTR_VOL	000b	IN2LN to MIXOUTR Volume
Output Mixer6		[2:0]		0dB to -21dB in 3dB steps
				(See Table 44 for Volume Range) IN2RN to MIXOUTR Mute
R46 (2Eh)	4	IN2RN_TO_MIXOUTR	0b	0 = Mute
Output Mixer2				1 = Un-mute
R48 (30h)	8:6	IN2RN_MIXOUTR_VOL	000b	IN2RN to MIXOUTR Volume
Output Mixer4	0.0	[2:0]	0000	0dB to -21dB in 3dB steps
				(See Table 44 for Volume Range)
R46 (2Eh)	3	IN1L_TO_MIXOUTR	0b	IN1L PGA Output to MIXOUTR Mute
Output Mixer2	Ŭ		0.0	0 = Mute
output mixor2				1 = Un-mute
R48 (30h)	5:3	IN1L_MIXOUTR_VOL	000b	IN1L PGA Output to MIXOUTR
Output Mixer4		[2:0]		Volume
-				0dB to -21dB in 3dB steps
				(See Table 44 for Volume Range)
R46 (2Eh)	2	IN1R_TO_MIXOUTR	0	IN1R PGA Output to MIXOUTR
Output Mixer2				Mute
				0 = Mute
D40 (20h)	0.0		000	
R48 (30h)	2:0	IN1R_MIXOUTR_VOL [2:0]	000b	IN1R PGA Output to MIXOUTR Volume
Output Mixer4		[2.0]		0dB to -21dB in 3dB steps
				(See Table 44 for Volume Range)
R46 (2Eh)	1	IN2RP_TO_MIXOUTR	0b	IN2RP to MIXOUTR Mute
Output Mixer2	-			0 = Mute
e alp at minter 2				1 = Un-mute
R48 (30h)	11:9	IN2RP_MIXOUTR_VOL	000b	IN2RP to MIXOUTR Volume
Output Mixer4		[2:0]		0dB to -21dB in 3dB steps
				(See Table 44 for Volume Range)
R46 (2Eh)	7	MIXINL_TO_MIXOUTR	0b	MIXINL Output (Left ADC bypass) to
Output Mixer2				MIXOUTR Mute
				0 = Mute
	5.0		0001	1 = Un-mute
R50 (32h)	5:3	MIXINL_MIXOUTR_VO L[2:0]	000b	MIXINL Output (Left ADC bypass) to MIXOUTR Volume
Output Mixer6		L[2.0]		0dB to -21dB in 3dB steps
				(See Table 44 for Volume Range)
R46 (2Eh)	6	MIXINR_TO_MIXOUTR	0b	MIXINR Output (Right ADC bypass)
Output Mixer2	-			to MIXOUTR Mute
				0 = Mute
				1 = Un-mute
R50 (32h)	2:0	MIXINR_MIXOUTR_VO	000b	MIXINR Output (Right ADC bypass)
Output Mixer6		L [2:0]		to MIXOUTR Volume
				0dB to -21dB in 3dB steps
		DAOD TO MINOUTO		(See Table 44 for Volume Range)
R46 (2Eh)	0	DACR_TO_MIXOUTR	0b	Right DAC to MIXOUTR Mute 0 = Mute
Output Mixer2				0 = Mute 1 = Un-mute
R50 (32h)	11:9	DACR_MIXOUTR_VOL	000b	Right DAC to MIXOUTR Volume
Output Mixer6	11.3	[2:0]	0000	0dB to -21dB in 3dB steps
		- - -		(See Table 44 for Volume Range)
			1	(

Table 43 Right Output Mixer (MIXOUTR) Control

VOLUME SETTING	VOLUME (dB)
000	0
001	-3
010	-6
011	-9
100	-12
101	-15
110	-18
111	-21

Table 44 MIXOUTL and MIXOUTR Volume Range

SPEAKER MIXER CONTROL

The Speaker Mixer path select and volume controls are described in Table 45 for the Left Channel (SPKMIXL) and Table 46 for the Right Channel (SPKMIXR).

Care should be taken when enabling more than one path to a speaker mixer in order to avoid clipping. The gain of each input path is adjustable using a selectable -3dB control in each path to facilitate this. Each Speaker Mixer output is also controlled by an additional independent volume control. The DAC input levels may also be controlled by the DAC digital volume control - see "Digital to Analogue Converter (DAC)" for further details.

REGISTER ADDRESS	BIT	LABEL	DEFAULT	DESCRIPTION
R54 (36h) Speaker Mixer	7	MIXINL_TO_SPKMIXL	0b	MIXINL (Left ADC bypass) to SPKMIXL Mute
				0 = Mute
				1 = Un-mute
	5	IN1LP_TO_SPKMIXL	0b	IN1LP to SPKMIXL Mute
				0 = Mute
				1 = Un-mute
	3	MIXOUTL_TO_SPKMIX L	0b	Left Mixer Output to SPKMIXL Mute
				0 = Mute
				1 = Un-mute
	1	DACL_TO_SPKMIXL	0b	Left DAC to SPKMIXL Mute
				0 = Mute
				1 = Un-mute
R34 (22h) SPKMIXL	5	MIXINL_SPKMIXL_VOL	0b	MIXINL (Left ADC bypass) to SPKMIXL Fine Volume Control
Attenuation				0 = 0dB
				1 = -3dB
	4	IN1LP_SPKMIXL_VOL	0b	IN1LP to SPKMIXL Fine Volume Control
				0 = 0dB
				1 = -3dB
	3	MIXOUTL_SPKMIXL_V OL	0b	Left Mixer Output to SPKMIXL Fine Volume Control
				0 = 0dB
				1 = -3dB
	2	DACL_SPKMIXL_VOL	0b	Left DAC to SPKMIXL Fine Volume Control
				0 = 0dB
				1 = -3dB

REGISTER ADDRESS	BIT	LABEL	DEFAULT	DESCRIPTION
	1:0	SPKMIXL_VOL [1:0]	11b	Left Speaker Mixer Volume Control
				00 = 0dB
				01 = -6dB
				10 = -12dB
				11 = mute

Table 45 Left Speaker Mixer (SPKMIXL) Control

REGISTER ADDRESS	BIT	LABEL	DEFAULT	DESCRIPTION
R54 (36h) Speaker	6	MIXINR_TO_SPKMIXR	0b	MIXINR (Right ADC bypass) to SPKMIXR Mute
Mixer				0 = Mute
				1 = Un-mute
	4	IN1RP_TO_SPKMIXR	0b	IN1RP to SPKMIXR Mute
				0 = Mute
				1 = Un-mute
	2	MIXOUTR_TO_SPKMIX R	0b	Right Mixer Output to SPKMIXR Mute
				0 = Mute
				1 = Un-mute
	0	DACR_TO_SPKMIXR	0b	Right DAC to SPKMIXR Mute
				0 = Mute
				1 = Un-mute
R35 (22h) SPKMIXR	5	MIXINR_SPKMIXR_VOL	0b	MIXINR (Right ADC bypass) to SPKMIXR Fine Volume Control
Attenuation				0 = 0dB
				1 = -3dB
	4	IN1RP_SPKMIXR_VOL	0b	IN1RP to SPKMIXR Fine Volume Control
				0 = 0dB
				1 = -3dB
	3	MIXOUTR_SPKMIXR_V OL	0b	Right Mixer Output to SPKMIXR Fine Volume Control
				0 = 0 dB
				1 = -3dB
	2	DACR_SPKMIXR_VOL	0b	Right DAC to SPKMIXR Fine Volume Control
				0 = 0 dB
				1 = -3dB
	1:0	SPKMIXR_VOL [1:0]	11b	Right Speaker Mixer Volume Control
				00 = 0dB
				01 = -6dB
				10 = -12dB
				11 = mute

Table 46 Right Speaker Mixer (SPKMIXR) Control

OUTPUT SIGNAL PATH VOLUME CONTROL

There are six output PGAs - MIXOUTLVOL, MIXOUTRVOL, HPOUT1LVOL, HPOUT1RVOL, SPKLVOL and SPKRVOL. Each can be independently controlled, with MIXOUTLVOL and MIXOUTRVOL providing volume control to both the earpiece and line drivers, HPOUT1LVOL and HPOUT1RVOL to the headphone driver, and SPKLVOL and SPKRVOL to the speaker drivers.

The volume control of each of these output PGAs can be adjusted over a wide range of values. To minimise pop noise, it is recommended that only the MIXOUTLVOL, MIXOUTRVOL, HPOUT1LVOL, HPOUT1LVOL, APOUT1LVOL, APOUT1RVOL, SPKLVOL and SPKRVOL are modified while the output signal path is active. Other gain controls are provided in the signal paths to provide scaling of signals from different sources, and to prevent clipping when multiple signals are mixed. However, to prevent pop noise, it is recommended that those other gain controls should not be modified while the signal path is active.

To prevent "zipper noise", a zero-cross function is provided on the output PGAs. When this feature is enabled, volume updates will not take place until a zero-crossing is detected. In the case of a long period without zero-crossings, a timeout function is provided. When the zero-cross function is enabled, the volume will update after the timeout period if no earlier zero-cross has occurred. The timeout clock is enabled using TOCLK_ENA; the timeout period is set by TOCLK_RATE. See "Clocking and Sample Rates" for more information on these fields.

The mixer output PGA controls are shown in Table 47. The MIXOUT_VU bits control the loading of the output mixer PGA volume data. When MIXOUT_VU is set to 0, the volume control data will be loaded into the respective control register, but will not actually change the gain setting. The output mixer PGA volume settings are both updated when a 1 is written to either MIXOUT_VU bit. This makes it possible to update the gain of both output paths simultaneously.

REGISTER ADDRESS	BIT	LABEL	DEFAULT	DESCRIPTION
R32 (20h) Left OPGA Volume	8	MIXOUT_VU	N/A	Mixer Output PGA Volume Update Writing a 1 to this bit will update MIXOUTLVOL and MIXOUTRVOL volumes simultaneously.
	7	MIXOUTL_ZC	Ob	MIXOUTLVOL (Left Mixer Output PGA) Zero Cross Enable 0 = Zero cross disabled 1 = Zero cross enabled
	6	MIXOUTL_MUTE_N	1b	MIXOUTLVOL (Left Mixer Output PGA) Mute 0 = Mute 1 = Un-mute
	5:0	MIXOUTL_VOL [5:0]	39h (0dB)	MIXOUTLVOL (Left Mixer Output PGA) Volume -57dB to +6dB in 1dB steps (See Table 50 for output PGA volume control range)
R33 (21h) Right OPGA Volume	8	MIXOUT_VU	N/A	Mixer Output PGA Volume Update Writing a 1 to this bit will update MIXOUTLVOL and MIXOUTRVOL volumes simultaneously.
	7	MIXOUTR_ZC	0b	MIXOUTRVOL (Right Mixer Output PGA) Zero Cross Enable 0 = Zero cross disabled 1 = Zero cross enabled
	6	MIXOUTR_MUTE_N	1b	MIXOUTLVOL (Right Mixer Output PGA) Mute 0 = Mute 1 = Un-mute
	5:0	MIXOUTR_VOL [5:0]	39h (0dB)	MIXOUTRVOL (Right Mixer Output PGA) Volume -57dB to +6dB in 1dB steps (See Table 50 for output PGA volume control range)

Table 47 Mixer Output PGA (MIXOUTLVOL, MIXOUTRVOL) Control

The headphone output PGA is configurable between two input sources. The default input to each headphone output PGA is the respective output mixer (MIXOUTL or MIXOUTR). A direct path from the DACL or DACR can be selected using the DACL_TO_HPOUT1L and DACR_TO_HPOUT1R

register bits. When these bits are selected, a DAC to Headphone playback path is possible without using the output mixers; this offers reduced power consumption by allowing the output mixers to be disabled in this typical usage case.

The headphone output PGA controls are shown in Table 48. The HPOUT1_VU bits control the loading of the headphone PGA volume data. When HPOUT1_VU is set to 0, the volume control data will be loaded into the respective control register, but will not actually change the gain setting. The headphone PGA volume settings are both updated when a 1 is written to either HPOUT1_VU bit. This makes it possible to update the gain of both output paths simultaneously.

REGISTER ADDRESS	BIT	LABEL	DEFAULT	DESCRIPTION
R28 (1Ch) Left Output	8	HPOUT1_VU	N/A	Headphone Output PGA Volume Update
Volume				Writing a 1 to this bit will update HPOUT1LVOL and HPOUT1RVOL volumes simultaneously.
	7	HPOUT1L_ZC	0b	HPOUT1LVOL (Left Headphone Output PGA) Zero Cross Enable
				0 = Zero cross disabled 1 = Zero cross enabled
	6	HPOUT1L_MUTE_N	1b	HPOUT1LVOL (Left Headphone Output PGA) Mute
				0 = Mute 1 = Un-mute
	5:0	HPOUT1L_VOL [5:0]	2Dh (-12dB)	HPOUT1LVOL (Left Headphone Output PGA) Volume -57dB to +6dB in 1dB steps
				(See Table 50 for output PGA volume control range)
R45 (2Dh) Output	8	DACL_TO_HPOUT1L	0b	HPOUT1LVOL (Left Headphone Output PGA) Input Select
Mixer1				0 = MIXOUTL 1 = DACL
R29 (1Dh) Right Output	8	HPOUT1_VU	N/A	Headphone Output PGA Volume Update
Volume				Writing a 1 to this bit will update HPOUT1LVOL and HPOUT1RVOL volumes simultaneously.
	7	HPOUT1R_ZC	Ob	HPOUT1RVOL (Right Headphone Output PGA) Zero Cross Enable 0 = Zero cross disabled 1 = Zero cross enabled
	6	HPOUT1R_MUTE_N	1b	HPOUT1RVOL (Right Headphone Output PGA) Mute 0 = Mute 1 = Un-mute
	5:0	HPOUT1R_VOL [5:0]	2Dh (-12dB)	HPOUT1RVOL (Right Headphone Output PGA) Volume
				-57dB to +6dB in 1dB steps (See Table 50 for output PGA volume control range)
R46 (2Eh) Output	8	DACR_TO_HPOUT1 R	Ob	HPOUT1RVOL (Right Headphone Output PGA) Input Select
Mixer2				0 = MIXOUTR 1 = DACR

Table 48 Headphone Output PGA (HPOUT1LVOL, HPOUT1RVOL) Control

The speaker output PGA controls are shown in Table 49.The SPKOUT_VU bits control the loading of the speaker PGA volume data. When SPKOUT_VU is set to 0, the volume control data will be loaded into the respective control register, but will not actually change the gain setting. The speaker PGA volume settings are both updated when a 1 is written to either SPKOUT_VU bit. This makes it possible to update the gain of both output paths simultaneously.

REGISTER ADDRESS	BIT	LABEL	DEFAULT	DESCRIPTION
R38 (26h) Speaker	8	SPKOUT_VU	N/A	Speaker Output PGA Volume Update
Volume Left				Writing a 1 to this bit will update SPKLVOL and SPKRVOL volumes simultaneously.
	7	SPKOUTL_ZC	0b	SPKLVOL (Left Speaker Output PGA) Zero Cross Enable
				0 = Zero cross disabled
				1 = Zero cross enabled
	6	SPKOUTL_MUTE_N	1b	SPKLVOL (Left Speaker Output PGA) Mute
				0 = Mute
				1 = Un-mute
	5:0	SPKOUTL_VOL [5:0]	39h (0dB)	SPKLVOL (Left Speaker Output PGA) Volume
				-57dB to +6dB in 1dB steps
				(See Table 50 for output PGA volume control range)
R39 (27h)	8	SPKOUT_VU	N/A	Speaker PGA Volume Update
Speaker Volume Right				Writing a 1 to this bit will update SPKLVOL and SPKRVOL volumes simultaneously.
	7	SPKOUTR_ZC	0b	SPKRVOL (Right Speaker Output PGA) Zero Cross Enable
				0 = Zero cross disabled
				1 = Zero cross enabled
	6	SPKOUTR_MUTE_N	1b	SPKRVOL (Right Speaker Output PGA) Mute
				0 = Mute
				1 = Un-mute
	5:0	SPKOUTR_VOL [5:0]	39h (0dB)	SPKRVOL (Right Speaker Output PGA) Volume
				-57dB to +6dB in 1dB steps
				(See Table 50 for output PGA volume control range)

Table 49 Speaker Output PGA (SPKLVOL, SPKRVOL) Control

PGA GAIN SETTING	VOLUME (dB)	PGA GAIN SETTING	VOLUME (dB)
0h	-57	20h	-25
1h	-56	21h	-24
2h	-55	22h	-23
3h	-54	23h	-22
4h	-53	24h	-21
5h	-52	25h	-20
6h	-51	26h	-19
7h	-50	27h	-18
8h	-49	28h	-17
9h	-48	29h	-16
Ah	-47	2Ah	-15
Bh	-46	2Bh	-14
Ch	-45	2Ch	-13
Dh	-44	2Dh	-12
Eh	-43	2Eh	-11
Fh	-42	2Fh	-10
10h	-41	30h	-9
11h	-40	31h	-8
12h	-39	32h	-7
13h	-38	33h	-6
14h	-37	34h	-5
15h	-36	35h	-4
16h	-35	36h	-3
17h	-34	37h	-2
18h	-33	38h	-1
19h	-32	39h	0
1Ah	-31	3Ah	+1
1Bh	-30	3Bh	+2
1Ch	-29	3Ch	+3
1Dh	-28	3Dh	+4
1Eh	-27	3Eh	+5
1Fh	-26	3Fh	+6

Table 50 Output PGA Volume Range

SPEAKER BOOST MIXER

Each class D/AB speaker driver has its own boost mixer which performs a dual role. It allows the output from the left speaker mixer (via SPKLVOL), right speaker mixer (via SPKRVOL), or the 'Direct Voice' path to be routed to either speaker driver. (The 'Direct Voice' path is the differential input, VRXN/VRXP, routed directly to the output drivers, providing a low power differential path from baseband voice to loudspeakers.) The speaker boost mixers are controlled using the registers defined in Table 51 below.

The second function of the speaker boost mixers is that they provide an additional AC gain (boost) function to shift signal levels between the AVDD1 and SPKVDD voltage domains for maximum output power. The AC gain (boost) function is described in the "Analogue Outputs" section.

REGISTER ADDRESS	BIT	LABEL	DEFAULT	DESCRIPTION
R36 (24h) SPKOUT	5	VRX_TO_SPKOUTL	0b	Direct Voice (Differential Input, VRXN/VRXP) to Left Speaker Mute
Mixers				0 = Mute
				1 = Un-mute
	4	SPKMIXL_TO_SPKOU TL	1b	SPKMIXL Left Speaker Mixer to Left Speaker Mute
				0 = Mute
				1 = Un-mute
	3	SPKMIXR_TO_SPKO UTL	0b	SPKMIXR Right Speaker Mixer to Left Speaker Mute
				0 = Mute
				1 = Un-mute
	2	VRX_TO_SPKOUTR	0b	Direct Voice (Differential Input, VRXN/VRXP) to Right Speaker Mute
				0 = Mute
				1 = Un-mute
	1	SPKMIXL_TO_SPKOU TR	0b	SPKMIXL Left Speaker Mixer to Right Speaker Mute
				0 = Mute
				1 = Un-mute
	0	SPKMIXR_TO_SPKO UTR	1b	SPKMIXR Right Speaker Mixer to Right Speaker Mute
				0 = Mute
				1 = Un-mute

Table 51 Speaker Boost Mixer (SPKOUTLBOOST, SPKOUTRBOOST) Control

EARPIECE DRIVER MIXER

The earpiece driver has a dedicated mixer, HPOUT2MIX, which is controlled using the registers defined in Table 52. The earpiece driver is configurable to select output from the left output mixer (via MIXOUTLVOL), the right output mixer (via MIXOUTRVOL), or the 'Direct Voice' path. (The 'Direct Voice' path is the differential input, VRXN/VRXP, routed directly to the output drivers, providing a low power differential path from baseband voice to earpiece.)

Care should be taken to avoid clipping when enabling more than one path to the earpiece driver. The HPOUT2VOL volume control can be used to avoid clipping when more than one full scale signal is input to the mixer.

REGISTER ADDRESS	BIT	LABEL	DEFAULT	DESCRIPTION
R31 (1Fh)	5	HPOUT2_MUTE	1b	HPOUT2 (Earpiece Driver) Mute
HPOUT2				0 = Un-mute
Volume				1 = Mute
	4	HPOUT2_VOL	0b	HPOUT2 (Earpiece Driver) Volume
				0 = 0dB
				1 = -6dB
R51 (33h) HPOUT2	5	VRX_TO_HPOUT2	0b	Direct Voice (Differential Input, VRXN/VRXP) to Earpiece Driver
Mixer				0 = Mute
				1 = Un-mute
	4	MIXOUTLVOL_TO_HP OUT2	0b	MIXOUTLVOL (Left Output Mixer PGA) to Earpiece Driver
				0 = Mute
				1 = Un-mute
	3	MIXOUTRVOL_TO_HP OUT2	0b	MIXOUTRVOL (Right Output Mixer PGA) to Earpiece Driver
				0 = Mute
				1 = Un-mute

Table 52 Earpiece Driver Mixer (HPOUT2MIX) Control

LINE OUTPUT MIXERS

The WM8993 provides two pairs of line outputs, both with highly configurable output mixers. The outputs LINEOUT1N and LINEOUT1P can be configured as two single-ended outputs or as a differential output. In the same manner, LINEOUT2N and LINEOUT2P can be configured either as two single-ended outputs or as a differential output. The respective line output mixers can be configured in single-ended mode or differential mode; each mode supports multiple signal path configurations.

LINEOUT1 single-ended mode is selected by setting LINEOUT1_MODE = 1. In single-ended mode, any of three possible signal paths may be enabled:

- MIXOUTL (left output mixer) to LINEOUT1P
- MIXOUTR (right output mixer) to LINEOUT1N
- MIXOUTL (left output mixer) to LINEOUT1N

LINEOUT1 differential mode is selected by setting LINEOUT1_MODE = 0. In differential mode, any of three possible signal paths may be enabled:

- MIXOUTL (left output mixer) to LINEOUT1N and LINEOUT1P
- IN1L (input PGA) to LINEOUT1N and LINEOUT1P
- IN1R (input PGA) to LINEOUT1N and LINEOUT1P

The LINEOUT1 output mixers are controlled as described in Table 53. Care should be taken to avoid clipping when enabling more than one path to the line output mixers. The LINEOUT1_VOL control can be used to provide -6dB attenuation when more than one full scale signal is applied.

When using the LINEOUT1 mixers in single-ended mode, a buffered VMID must be enabled. This is achieved by setting LINEOUT_VMID_BUF_ENA, as described in the "Analogue Outputs" section.

REGISTER ADDRESS	BIT	LABEL	DEFAULT	DESCRIPTION
R30 (1Eh)	6	LINEOUT1N_MUTE	1b	LINEOUT1N Line Output Mute
Line Outputs				0 = Un-mute
Volume				1 = Mute
	5	LINEOUT1P_MUTE	1b	LINEOUT1P Line Output Mute
				0 = Un-mute
				1 = Mute
	4	LINEOUT1_VOL	0b	LINEOUT1 Line Output Volume
				0 = 0dB
				1 = -6dB
				Applies to both LINEOUT1N and LINEOUT1P
R52 (34h) Line Mixer1	6	MIXOUTL_TO_LINEO UT1N	0b	MIXOUTL to Single-Ended Line Output on LINEOUT1N
				0 = Mute
				1 = Un-mute
				(LINEOUT1_MODE = 1)
	5	MIXOUTR_TO_LINE OUT1N	0b	MIXOUTR to Single-Ended Line Output on LINEOUT1N
				0 = Mute
				1 = Un-mute
				(LINEOUT1_MODE = 1)
	4	LINEOUT1_MODE	0b	LINEOUT1 Mode Select
				0 = Differential
				1 = Single-Ended
	2	IN1R_TO_LINEOUT1 P	0b	IN1R Input PGA to Differential Line Output on LINEOUT1
				0 = Mute
				1 = Un-mute
				$(LINEOUT1_MODE = 0)$
	1	IN1L_TO_LINEOUT1	0b	IN1L Input PGA to Differential Line
		Р		Output on LINEOUT1
				0 = Mute
				1 = Un-mute
				(LINEOUT1_MODE = 0)
	0	MIXOUTL_TO_LINEO UT1P	0b	Differential Mode (LINEOUT1_MODE = 0):
		UTIF		MIXOUTL to Differential Output on
				LINEOUT1
				0 = Mute
				1 = Un-mute
				Single Ended Mode
				(LINEOUT1_MODE = 1):
				MIXOUTL to Single-Ended Line Output on LINEOUT1P
				0 = Mute
				1 = Un-mute

Table 53 LINEOUT1N and LINEOUT1P Control

LINEOUT2 single-ended mode is selected by setting LINEOUT2_MODE = 1. In single-ended mode, any of three possible signal paths may be enabled:

- MIXOUTR (right output mixer) to LINEOUT2P
- MIXOUTL (left output mixer) to LINEOUT2N
- MIXOUTR (right output mixer) to LINEOUT2N

LINEOUT2 differential mode is selected by setting LINEOUT2_MODE = 0. In differential mode, any of three possible signal paths may be enabled:

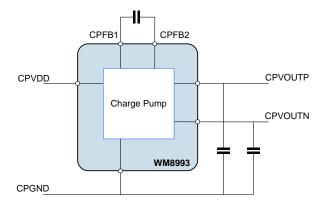
- MIXOUTR (right output mixer) to LINEOUT2N and LINEOUT2P
- IN1L (input PGA) to LINEOUT2P and LINEOUT2P
- IN1R (input PGA) to LINEOUT2N and LINEOUT2P

The LINEOUT2 output mixers are controlled as described in Table 54. Care should be taken to avoid clipping when enabling more than one path to the line output mixers. The LINEOUT2_VOL control can be used to provide -6dB attenuation when more than one full scale signal is applied.

When using the LINEOUT2 mixers in single-ended mode, a buffered VMID must be enabled. This is achieved by setting LINEOUT_VMID_BUF_ENA, as described in the "Analogue Outputs" section.

REGISTER ADDRESS	BIT	LABEL	DEFAULT	DESCRIPTION
R30 (1Eh)	2	LINEOUT2N_MUTE	1b	LINEOUT2N Line Output Mute
Line Outputs				0 = Un-mute
Volume				1 = Mute
	1	LINEOUT2P_MUTE	1b	LINEOUT2P Line Output Mute
				0 = Un-mute
				1 = Mute
	0	LINEOUT2_VOL	0b	LINEOUT2 Line Output Volume
				0 = 0 dB
				1 = -6dB
				Applies to both LINEOUT2N and LINEOUT2P
R53 (35h)	6	MIXOUTR_TO_LINEO	0b	MIXOUTR to Single-Ended Line
Line Mixer2		UT2N		Output on LINEOUT2N
				0 = Mute
				1 = Un-mute
				(LINEOUT2_MODE = 1)
	5	MIXOUTL_TO_LINEO UT2N	0b	MIXOUTL to Single-Ended Line Output on LINEOUT2N
				0 = Mute
				1 = Un-mute
				(LINEOUT2_MODE = 1)
	4	LINEOUT2_MODE	0b	LINEOUT2 Mode Select
				0 = Differential
				1 = Single-Ended
	2	IN1L_TO_LINEOUT2P	0b	IN1L Input PGA to Differential Line Output on LINEOUT2
				0 = Mute
				1 = Un-mute
				$(LINEOUT2_MODE = 0)$
	1	IN1R_TO_LINEOUT2P	0b	IN1R Input PGA to Differential Line Output on LINEOUT2
				0 = Mute
				1 = Un-mute
				$(LINEOUT2_MODE = 0)$
	0	MIXOUTR_TO_LINEO UT2P	0b	Differential Mode (LINEOUT2_MODE = 0):
				MIXOUTR to Differential Output on LINEOUT2
				0 = Mute
				1 = Un-mute
				Single-Ended Mode
				(LINEOUT2_MODE = 0):
				MIXOUTR to Single-Ended Line Output on LINEOUT2P
				0 = Mute
				1 = Un-mute

Table 54 LINEOUT2N and LINEOUT2P Control



CHARGE PUMP

The WM8993 incorporates a dual-mode Charge Pump which generates the supply rails for the headphone output drivers, HPOUT1L and HPOUT1R.

The Charge Pump has a single supply input, CPVDD, and generates split rails CPVOUTP and CPVOUTN according to the selected mode of operation.

The Charge Pump connections are illustrated in Figure 23 (see "Electrical Characteristics" for external component values). An input decoupling capacitor may also be required at CPVDD, depending upon the system configuration.

The Charge Pump is enabled by setting the CP_ENA bit. When enabled, the charge pump adjusts the output voltages (CPVOUTP and CPVOUTN) as well as the switching frequency in order to optimise the power consumption according to the operating conditions. This can take two forms, which are selected using the CP_DYN_PWR register bit.

- Register control (CP_DYN_PWR = 0)
- Dynamic control (CP_DYN_PWR = 1)

Under Register control, the HPOUT1L_VOL and HPOUT1R_VOL register settings are used to control the charge pump mode of operation.

Under Dynamic control, the audio signal level in the DAC is used to control the charge pump mode of operation. This is the Wolfson 'Class W' mode, which allows the power consumption to be optimised in real time, but can only be used if the DAC is the only signal source. This mode should not be used if any of the bypass paths are used to feed analogue inputs into the output signal path.

Under the recommended usage conditions of the WM8993, the Charge Pump will be enabled by running the default headphone Start-Up sequence as described in the "Control Write Sequence" section. (Similarly, it will be disabled by running the Shut-Down sequence.) In these cases, the user does not need to write to the CP_ENA bit. The Charge Pump operating mode defaults to Register control; Dynamic control may be selected by setting the CP_DYN_PWR register bit, if appropriate.

Note that the charge pump clock is derived from internal clock CLK_SYS; either MCLK or the FLL output selectable using the SYSCLK_SRC bit. Under normal circumstances an external clock signal must be present for the charge pump to function. However, the FLL has a free-running mode that does not require an external clock but will generate an internal clock suitable for running the charge pump. The clock division from CLK_SYS is handled transparently by the WM8993 without user intervention, as long as CLKSYS and sample rates are set correctly. Refer to the "Clocking and Sample Rates" section for more detail on the FLL and clocking configuration.

The Charge Pump control fields are described in Table 55.

REGISTER ADDRESS	BIT	LABEL	DEFAULT	DESCRIPTION
R76 (4Ch)	15	CP_ENA	0	Enable charge-pump digits
Charge Pump				0 = disable
1				1 = enable
				Note: Default value of R76[14:0] (0x1F25h) must not be changed when enabling/disabling the Charge Pump
R81 (51h) Class W 0	0	CP_DYN_PWR	0	Enable dynamic charge pump power control
				0 = charge pump controlled by volume register settings (Class G)
				1 = charge pump controlled by real- time audio level (Class W)

Table 55 Charge Pump Control

If the headphone output drivers (HPOUT1L and HPOUT1R) are not used, then the Charge Pump and the associated external components are not required. The Charge Pump and Headphone drivers should not be enabled in this case (CP_ENA=0, HPOUT1L_ENA=0, HPOUT1R_ENA=0).

If the Charge Pump is not used, and the associated external components are omitted, then the CPCA and CPCB pins can be left floating; the CPVOUTP and CPVOUTN pins should be grounded as illustrated in Figure 24.

Note that, when the Charge Pump is disabled, it is still recommended that the CPVDD pin is kept within its recommended operating conditions (1.71V to 2.0V).

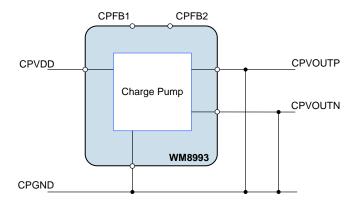


Figure 24 External Configuration when Charge Pump not used

DC SERVO

The WM8993 provides a DC servo circuit on the headphone outputs HPOUT1L and HPOUT1R in order to remove DC offset from these ground-referenced outputs. When enabled, the DC servo ensures that the DC level of these outputs remains within 1mV of ground. Removal of the DC offset is important because any deviation from GND at the output pin will cause current to flow through the load under quiescent conditions, resulting in increased power consumption. Additionally, the presence of DC offsets can result in audible pops and clicks at power up and power down.

The recommended usage of the DC Servo is initialised by running the default Start-Up sequence as described in the "Control Write Sequencer" section. The default Start-Up sequence executes a series of DC offset corrections, after which the measured offset correction is maintained on the headphone output channels. If a different usage is required, eg. if a periodic DC offset correction is required, then the default Start-Up sequence may be modified according to specific requirements. The relevant control fields are described in the following paragraphs and are defined in Table 56.

DC SERVO ENABLE AND START-UP

The DC Servo circuit is enabled on HPOUT1L and HPOUT1R by setting DCS_ENA_CHAN_0 and DCS_ENA_CHAN_1 respectively. When the DC Servo is enabled, the DC offset correction can be commanded in a number of different ways, including single-shot and periodically recurring events.

Writing a logic 1 to DCS_TRIG_STARTUP_*n* initiates a series of DC offset measurements and applies the necessary correction to the associated output; ('n' = 0 for Left channel, 1 for Right channel). On completion, the headphone output will be within 1mV of AGND. This is the DC Servo mode selected by the default Start-Up sequence. Completion of the DC offset correction triggered in this way is indicated by the DCS_STARTUP_COMPLETE field, as described in Table 56. Typically, this operation takes 86ms per channel.

For correct operation of the DC Servo Start-Up mode, it is important that there is no active audio signal present on the signal path while the mode is running. The DC Servo Start-Up mode should be scheduled at the correct position within the Headphone Output Enable sequence, as described in the "Output Signal Path" section. All other stages of the analogue signal path should be fully enabled prior to commanding the Start-Up mode; the DAC Digital Mute function should be used, where appropriate, to ensure there is no active audio signal present during the DC Servo measurements.

Writing a logic 1 to DCS_TRIG_DAC_WR_*n* causes the DC offset correction to be set to the value contained in the DCS_DAC_WR_VAL_*n* fields in Register R87. This mode is useful if the required offset correction has already been determined and stored; it is faster than the DCS_TRIG_STARTUP_*n* mode, but relies on the accuracy of the stored settings. Completion of the DC offset correction triggered in this way is indicated by the DCS_DAC_WR_COMPLETE field, as described in Table 56. Typically, this operation takes 2ms per channel.

For pop-free operation of the DC Servo DAC Write mode, it is important that the mode is scheduled at the correct position within the Headphone Output Enable sequence, as described in the "Output Signal Path" section.

When using either of the DC Servo options above, the status of the DC offset correction process is indicated by the DCS_CAL_COMPLETE field; this is the logical OR of the DCS_STARTUP_COMPLETE and DCS_DAC_WR_COMPLETE fields.

The DC Servo control fields associated with start-up operation are described in Table 56. It is important to note that, to minimise audible pops/clicks, the Start-Up and DAC Write modes of DC Servo operation should be commanded as part of a control sequence which includes muting and shorting of the headphone outputs; a suitable sequence is defined in the default Start-Up sequence.

REGISTER ADDRESS	BIT	LABEL	DEFAULT	DESCRIPTION
R84 (54h) DC Servo 0	5	DCS_TRIG_START UP_1	0	Writing 1 to this bit selects Start- Up DC Servo mode for HPOUT1R.
				In readback, a value of 1 indicates that the DC Servo Start-Up correction is in progress.
	4	DCS_TRIG_START UP_0	0	Writing 1 to this bit selects Start- Up DC Servo mode for HPOUT1L.
				In readback, a value of 1 indicates that the DC Servo Start-Up correction is in progress.
	3	DCS_TRIG_DAC_W R_1	0	Writing 1 to this bit selects DAC Write DC Servo mode for HPOUT1R.
				In readback, a value of 1 indicates that the DC Servo DAC Write correction is in progress.
	2	DCS_TRIG_DAC_W R_0	0	Writing 1 to this bit selects DAC Write DC Servo mode for HPOUT1L.
				In readback, a value of 1 indicates that the DC Servo DAC Write correction is in progress.
	1	DCS_ENA_CHAN_1	0	DC Servo enable for HPOUT1R 0 = disabled 1 = enabled
	0	DCS_ENA_CHAN_0	0	DC Servo enable for HPOUT1L 0 = disabled 1 = enabled
R87 (57h) DC Servo 3	15:8	DCS_DAC_WR_VA L1 [7:0]	0000 0000	DC Offset value for HPOUT1Rin DAC Write DC Servo mode. Two's complement format.
				LSB is 0.25mV. Range is -32mV to +31.75mV
	7:0	DCS_DAC_WR_VA L0 [7:0]	0000 0000	DC Offset value for HPOUT1Lin DAC Write DC Servo mode.
				Two's complement format. LSB is 0.25mV. Range is -32mV to +31.75mV

REGISTER ADDRESS	BIT	LABEL	DEFAULT	DESCRIPTION
R88 (58h) DC Servo Readback 0	9:8	DCS_CAL_COMPL ETE [1:0]	00	DC Servo Complete status 0 = DAC Write or Start-Up DC Servo mode not completed. 1 = DAC Write or Start-Up DC Servo mode complete. Bit [1] = HPOUT1R Bit [0] = HPOUT1L
	5:4	DCS_DAC_WR_CO MPLETE [1:0]	00	DC Servo DAC Write status 0 = DAC Write DC Servo mode not completed. 1 = DAC Write DC Servo mode complete. Bit [1] = HPOUT1R Bit [0] = HPOUT1L
	1:0	DCS_STARTUP_C OMPLETE [1:0]	00	DC Servo Start-Up status 0 = Start-Up DC Servo mode not completed. 1 = Start-Up DC Servo mode complete. Bit [1] = HPOUT1R Bit [0] = HPOUT1L

Table 56 DC Servo Enable and Start-Up Modes

DC SERVO ACTIVE MODES

The DC Servo modes described above are suitable for initialising the DC offset correction circuit on the Headphone outputs as part of a controlled start-up sequence which is executed before the signal path is fully enabled. Additional modes are available for use whilst the signal path is active; these modes may be of benefit following a large change in signal gain, which can lead to a change in DC offset level. Periodic updates may also be desirable to remove slow drifts in DC offset caused by changes in parameters such as device temperature.

The DC Servo circuit is enabled on HPOUT1L and HPOUT1R by setting DCS_ENA_CHAN_0 and DCS_ENA_CHAN_1 respectively, as described earlier in Table 56.

Writing a logic 1 to DCS_TRIG_SINGLE_*n* initiates a single DC offset measurement and adjustment to the associated output; ('n' = 0 for Left channel, 1 for Right channel). This will adjust the DC offset correction on the selected channel by no more than 1LSB (0.25mV).

Setting DCS_TIMER_PERIOD_01 to a non-zero value will cause a single DC offset measurement and adjustment to be scheduled on a periodic basis. Periodic rates ranging from every 0.52s to in excess of 2hours can be selected.

Writing a logic 1 to DCS_TRIG_SERIES_*n* initiates a series of DC offset measurements and applies the necessary correction to the associated output. The number of DC Servo operations performed is determined by DCS_SERIES_NO_01. A maximum of 128 operations may be selected, though a much lower value will be sufficient in most applications.

The DC Servo control fields associated with active modes (suitable for use on a signal path that is in active use) are described in Table 57.

REGISTER ADDRESS	BIT	LABEL	DEFAULT	DESCRIPTION
R84 (54h) DC Servo 0	13	DCS_TRIG_SINGLE _1	0	Writing 1 to this bit selects a single DC offset correction for HPOUT1R.
				In readback, a value of 1 indicates that the DC Servo single correction is in progress.
	12	DCS_TRIG_SINGLE _0	0	Writing 1 to this bit selects a single DC offset correction for HPOUT1L.
				In readback, a value of 1 indicates that the DC Servo single correction is in progress.
	9	DCS_TRIG_SERIES _1	0	Writing 1 to this bit selects a series of DC offset corrections for HPOUT1R.
				In readback, a value of 1 indicates that the DC Servo DAC Write correction is in progress.
	8	DCS_TRIG_SERIES _0	0	Writing 1 to this bit selects a series of DC offset corrections for HPOUT1L.
				In readback, a value of 1 indicates that the DC Servo DAC Write correction is in progress.
R85 (55h) DC Servo 1	11:5	DCS_SERIES_NO_ 01 [6:0]	010 1010	Number of DC Servo updates to perform in a series event.
				0 = 1 updates 1 = 2 updates
				 127 = 128 updates
	3:0	DCS_TIMER_PERI OD_01 [3:0]	1010	Time between periodic updates. Time is calculated as 0.256s x (2^PERIOD)
				0000 = Off 0001 = 0.52s
				1010 = 266s (4min 26s) 1111 = 8519s (2hr 22s)

Table 57 DC Servo Active Modes

DC SERVO READBACK

The current DC offset value for each Headphone output channel can be read from Registers R89 and R90, as described in Table 58. Note that these values may form the basis of settings that are subsequently used by the DC Servo in DAC Write mode.

REGISTER ADDRESS	BIT	LABEL	DEFAULT	DESCRIPTION
R89 (59h) DC Servo	7:0	DCS_INTEG_CHAN _1	0000 0000	Readback value for HPOUT1R. Two's complement format.
Readback 1		_		LSB is 0.25mV. Range is -32mV to +31.75mV
R90 (5Ah) DC Servo Readback 2	7:0	DCS_INTEG_CHAN _0	0000 0000	Readback value for HPOUT1L. Two's complement format. LSB is 0.25mV. Range is -32mV to +31.75mV

Table 58 DC Servo Readback

ANALOGUE OUTPUTS

The speaker, headphone, earpiece and line outputs are highly configurable and may be used in many different ways.

SPEAKER OUTPUT CONFIGURATIONS

The speaker outputs SPKOUTL and SPKOUTR can be driven by either of the speaker mixers, SPKMIXL or SPKMIXR, or by the low power, differential Direct Voice path from IN2LP/VRXN and IN2RP/VRXP. Fine volume control is available on the speaker mixer paths using the SPKLVOL and SPKRVOL PGAs. A boost function is available on both the speaker mixer paths and the Direct Voice path. For information on the speaker mixing options, refer to the "Output Signal Path" section.

The speaker outputs SPKOUTL and SPKOUTR operate in a BTL configuration in Class AB or Class D amplifier modes. The default mode is class D but class AB mode can be selected by setting the SPKOUT_CLASSAB_MODE register bit, as defined in Table 60.

The speaker outputs may be configured in two ways:

- 1. Stereo Mode supports up to 1W into stereo 8Ω BTL loads
- 2. Mono Mode supports up to 2W into a single 4Ω BTL load

Mono mode is selected by applying a logic high input to the SPKMONO pin (E3). For Stereo mode this pin should be connected to GND. Note that SPKMONO is referenced to DBVDD.

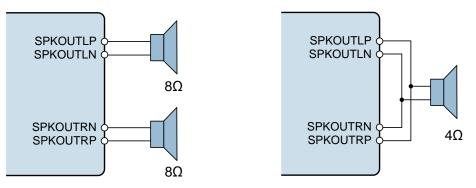

SPEAKER CONFIGURATION	SPKMONO PIN (E3)
Stereo Mode	GND
Mono Mode	DBVDD

Table 59 SPKMONO Pin Function

For mono operation, the P channels, SPKOUTLP and SPKOUTRP should be connected together on the PCB, and similarly with the N channels, SPKOUTLN and SPKOUTRN. Refer to External Components Diagram in the 'Applications Information' for more details. In this configuration both left and right speaker drivers should be enabled (SPKOUTL_ENA=1 and SPKOUTR_ENA=1), but path selection and volume controls are available on left channel only (SPKMIXL, SPKLVOL and SPKOUTLBOOST).

Note that for applications with a mono 8Ω speaker it is possible to improve THD performance at higher power levels by configuring the output in mono mode instead of running either the left of right channel in stereo mode.

The connections for stereo and mono speaker configurations are shown in Figure 25.

Eight levels of AC signal boost are provided in order to deliver maximum output power for many commonly-used SPKVDD/AVDD1 combinations. These boost options are available in both Class AB and Class D modes. The AC boost levels from 0dB to +12dB are selected using register bits SPKOUTL_BOOST and SPKOUTR_BOOST. To prevent pop noise, SPKOUTL_BOOST and SPKOUTR_BOOST should not be modified while the speaker outputs are enabled. Figure 26 illustrates the speaker outputs and the mixing and gain/boost options available.

Ultra-low leakage and high PSRR allow the speaker supply SPKVDD to be directly connected to a lithium battery. Note that an appropriate SPKVDD supply voltage must be provided to prevent waveform clipping when speaker boost is used.

DC gain is applied automatically in both class AB and class D modes with a shift from VMID to SPKVDD/2. This provides optimum signal swing for maximum output power. In class AB mode, an ultra-high PSRR mode is available, in which the DC reference for the speaker driver is fixed at VMID. This mode is selected by enabling the SPKAB_REF_SEL bit (see Table 60). In this mode, the output power is limited but the driver will still be capable of driving more than 500mW in 8 Ω while maintaining excellent suppression of noise on SPKVDD (for example, TDMA noise in a GSM phone application).

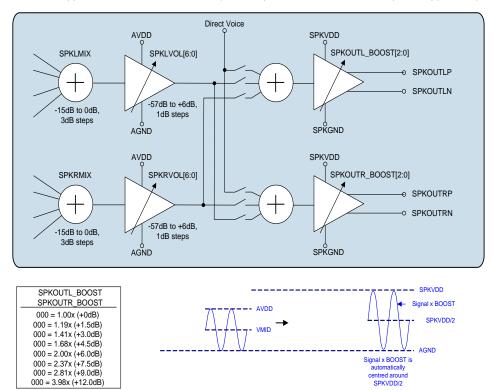


Figure 26 Speaker Output Configuration and AC Boost Operation

REGISTER ADDRESS	BIT	LABEL	DEFAULT	DESCRIPTION
R35 (23h)	8	SPKOUT_CLASSAB	0b	Speaker Class AB Mode Enable
SPKMIXR		_MODE		0 = Class D mode
Attenuation				1 = Class AB mode
R37 (25h)	5:3	SPKOUTL_BOOST	000b	Left Speaker Gain Boost
SPKOUT		[2:0]	(1.0x)	000 = 1.00x boost (+0dB)
Boost				001 = 1.19x boost (+1.5dB)
				010 = 1.41x boost (+3.0dB)
				011 = 1.68x boost (+4.5dB)
				100 = 2.00x boost (+6.0dB)
				101 = 2.37x boost (+7.5dB)
				110 = 2.81x boost (+9.0dB)
				111 = 3.98x boost (+12.0dB)
	2:0	SPKOUTR_BOOST	000b	Right Speaker Gain Boost
		[2:0]	(1.0x)	000 = 1.00x boost (+0dB)
				001 = 1.19x boost (+1.5dB)
				010 = 1.41x boost (+3.0dB)
				011 = 1.68x boost (+4.5dB)
				100 = 2.00x boost (+6.0dB)
				101 = 2.37x boost (+7.5dB)
				110 = 2.81x boost (+9.0dB)
				111 = 3.98x boost (+12.0dB)
R54 (36h)	8	SPKAB_REF_SEL	0b	Selects Reference for Speaker in
Speaker				Class AB mode
Mixer				0 = SPKVDD/2
				1 = VMID

Table 60 Speaker Mode and Boost Control

Clocking of the Class D output driver is derived from CLK_SYS. The clocking frequency division is configured automatically, according to the CLK_SYS_RATE and SAMPLE_RATE registers. (See "Clocking and Sample Rates" for further details of the system clocks and control registers.)

The Class D switching clock is enabled whenever SPKOUTL_ENA or SPKOUTR_ENA is set, provided also that SPKOUT_CLASSAB_MODE = 0. The frequency is as described in Table 61.

Note that the CLK_SYS must be present and enabled when using the speaker outputs in Class D mode.

SAMPLE		SYSTEM CLOCK RATE (CLK_SYS / fs ratio)								
RATE (kHz)	64	128	192	256	384	512	768	1024	1408	1536
8	256	256	256	341.3	256	341.3	256	341.3	352	256
11.025	352.8	352.8	352.8	352.8	352.8	352.8	352.8	352.8		
12	384	384	384	384	384	384	384	384		
16	256	341.3	384	341.3	384	341.3	384			
22.05	352.8	352.8	352.8	352.8	352.8	352.8				
24	341.3	384	384	384	384	384				
32	341.3	341.3	384	341.3	384					
44.1	352.8	352.8	352.8	352.8						
48	384	384	384	384						

Table 61 Class D Switching Frequency (kHz)

HEADPHONE OUTPUT CONFIGURATIONS

The headphone outputs HPOUT1L andHPOUT1R are driven by the headphone output PGAs HPOUT1LVOL and HPOUT1RVOL. Each PGA has its own dedicated volume control, as described in the "Output Signal Path" section. The input to these PGAs can be either the output mixers MIXOUTL and MIXOUTR or the direct DAC outputs DACL and DACR.

The headphone output driver is capable of driving up to 25mW into a 16 Ω or 32 Ω load such as a stereo headset or headphones. The outputs are ground-referenced, eliminating any requirement for AC coupling capacitors. This is achieved by having separate positive and negative supply rails powered by an on-chip charge pump. A DC Servo circuit removes any DC offset from the headphone outputs, suppressing 'pop' noise and minimising power consumption. The Charge Pump and DC Servo are described separately (see "Charge Pump" and "DC Servo" respectively).

It is recommended to connect a zobel network to the headphone output pins HPOUT1L and HPOUT1R for best audio performance in all applications. The components of the zobel network have the effect of dampening high frequency oscillations or instabilities that can arise outside the audio band under certain conditions. Possible sources of these instabilities include the inductive load of a headphone coil or an active load in the form of an external line amplifier. The capacitance of lengthy cables or PCB tracks can also lead to amplifier instability. The zobel network should comprise of a 20 Ω resistor and 100nF capacitor in series with each other, as illustrated in Figure 27.

If any ground-referenced headphone output is not used, then the zobel network components can be omitted from the corresponding output pin, and the pin can be left floating. The respective headphone driver(s) should not be enabled in this case.

Figure 27 Zobel Network Components for HPOUT1L and HPOUT1R

The headphone output incorporates a common mode, or ground loop, feedback path which provides rejection of system-related ground noise. The return path is via HPOUT1FB. This pin must be connected to ground for normal operation of the headphone output. No register configuration is required.

Note that the HPOUT1FB pin should be connected to GND close to the headphone jack, as illustrated in Figure 27.

EARPIECE DRIVER OUTPUT CONFIGURATIONS

The earpiece driver outputs HPOUT2P and HPOUT2N are driven by the HPOUT2MIX output mixer, which can take inputs from the mixer output PGAs MIXOUTLVOL and MIXOUTRVOL, or from the low power, differential Direct Voice path IN2LP/VRXN and IN2RP/VRXP. Fine volume control is available on the output mixer paths using MIXOUTLVOL and MIXOUTRVOL. A selectable -6dB attenuation is available on the HPOUT2MIX output, as described in Table 52 (refer to the "Output Signal Path" section).

The earpiece outputs are designed to operate in a BTL configuration, driving 50mW into a typical 16 Ω ear speaker.

For suppression of pop noise there are two separate enables for the earpiece driver; HPOUT2_ENA enables the output stage and HPOUT2_IN_ENA enables the mixer and input stage. HPOUT2_IN_ENA should be enabled a minimum of $50\mu s$ before HPOUT2_ENA – see "Control Write Sequencer" section for an example power sequence.

LINE OUTPUT CONFIGURATIONS

The four line outputs LINEOUT1P, LINEOUT1N, LINEOUT2P and LINEOUT2N provide a highly flexible combination of differential and single-ended configurations, each driven by a dedicated output mixer. There is a selectable -6dB gain option in each mixer to avoid clipping when mixing more than one signal into a line output. Additional volume control is available at other locations within each of the supported signal paths. For more information about the line output mixing options, refer to the "Output Signal Path" section.

Typical applications for the line outputs (single-ended or differential) are:

- Handset or headset microphone output to external voice CODEC
- Stereo line output
- Output to external speaker driver(s) to support additional loudspeakers (e.g. stereo 2W with external driver plus on-chip mono 2W output)

When single-ended mode is selected for either LINEOUT1 or LINEOUT2, a buffered VMID must be enabled as a reference for the outputs. This is enabled by setting the LINEOUT_VMID_BUF_ENA bit as defined in Table 62.

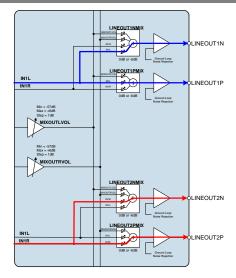
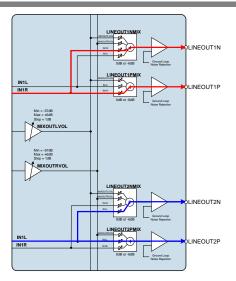
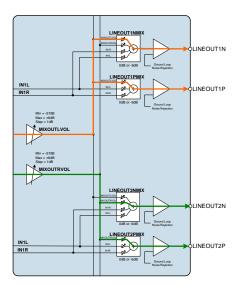

REGISTER ADDRESS	BIT	LABEL	DEFAULT	DESCRIPTION
R56 (38h) AntiPOP1	7	LINEOUT_VMID_BUF_E NA	Ob	Enables VMID reference for line outputs in single-ended mode 0 = Disabled 1 = Enabled

Table 62 LINEOUT VMID Buffer for Single-Ended Operation

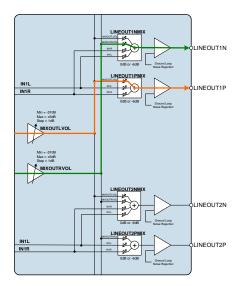

Some example line output configurations are listed and illustrated below.

- Differential line output from Mic/Line input on IN1L PGA
- Differential line output from Mic/Line input on IN1R PGA
- Stereo differential line output from output mixers MIXOUTL and MIXOUTR
- Stereo single-ended line output from output mixer to either LINEOUT1 or LINEOUT2
- Mono single-ended line output from output mixer



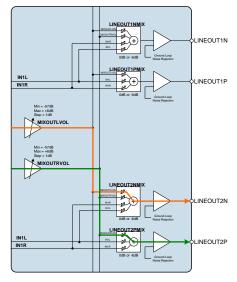
LINEOUT1N_MUTE=0, LINEOUT1P_MUTE=0 LINEOUT2N_MUTE=0, LINEOUT2P_MUTE=0 LINEOUT1_MODE=0 LINEOUT2_MODE=0 IN1L_TO_LINEOUT1P=1 IN1R_TO_LINEOUT2P=1

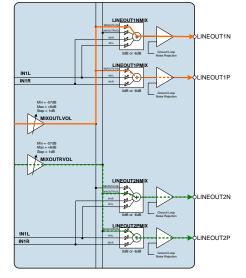
LINEOUT1N_MUTE=0, LINEOUT1P_MUTE=0 LINEOUT2N_MUTE=0, LINEOUT2P_MUTE=0 LINEOUT1_MODE=0 LINEOUT2_MODE=0 IN1R_TO_LINEOUT1P=1 IN1L_TO_LINEOUT2P=1


Figure 28 Differential Line Out from input PGA IN1L (to LINEOUT1) and IN1R (to LINEOUT2)

LINEOUT1N_MUTE=0, LINEOUT1P_MUTE=0 LINEOUT2N_MUTE=0, LINEOUT2P_MUTE=0 LINEOUT1_MODE=0 MIXOUTL_TO_LINEOUT1P=1 MIXOUTR_TO_LINEOUT2P=1

Figure 30 Stereo Differential Line Out from MIXOUTL and MIXOUTR


Figure 29 Differential Line Out from input PGA IN1R (to LINEOUT1) and IN1L (to LINEOUT2)



LINEOUT1N_MUTE=0, LINEOUT1P_MUTE=0 LINEOUT2N_MUTE=0, LINEOUT2P_MUTE=0 LINEOUT1_MODE=1 MIXOUTL_TO_LINEOUT1P=1 MIXOUTR_TO_LINEOUT1N=1 LINEOUT_VMID_BUF_ENA=1

Figure 31 Stereo Single-Ended Line Out from MIXOUTL and MIXOUTR to LINEOUT1

LINEOUT1N_MUTE=0, LINEOUT1P_MUTE=0 LINEOUT2N_MUTE=0, LINEOUT2P_MUTE=0 LINEOUT1_MODE=1 MIXOUTL_TO_LINEOUT2N=1 MIXOUTR_TO_LINEOUT2P=1 LINEOUT_VMID_BUF_ENA=1 LINEOUT1N_MUTE=0, LINEOUT1P_MUTE=0 LINEOUT2N_MUTE=0, LINEOUT2P_MUTE=0 LINEOUT1_MODE=1 LINEOUT2_MODE=1 MIXOUTL_TO_LINEOUT1N=1 and/or MIXOUTL_TO_LINEOUT1P=1 MIXOUTR_TO_LINEOUT2N=1 and/or MIXOUTR_TO_LINEOUT2P=1 LINEOUT_VMID_BUF_ENA=1

Figure 32Stereo Single-Ended Line Out fromFigure 33MonoLineOut toLINEOUT1N,MIXOUTL and MIXOUTR to LINEOUT2LINEOUT1P, LINEOUT2N, LINEOUT2P

The line outputs incorporate a common mode, or ground loop, feedback path which provides rejection of system-related ground noise. The return path, via LINEOUTFB, is enabled separately for LINEOUT1 and LINEOUT2 using the LINEOUT1_FB and LINEOUT2_FB bits as defined in Table 63.

Ground loop feedback is a benefit to single-ended line outputs only; it is not applicable to differential outputs, which already inherently offer common mode noise rejection.

REGISTER ADDRESS	BIT	LABEL	DEFAULT	DESCRIPTION
R55 (37h) Additional Control	7	LINEOUT1_FB	Ob	Enable ground loop noise feedback on LINEOUT1 0 = Disabled 1 = Enabled
	6	LINEOUT2_FB	Ob	Enable ground loop noise feedback on LINEOUT2 0 = Disabled 1 = Enabled

Table 63 Line Output Ground Loop Feedback Enable

GENERAL PURPOSE INPUT/OUTPUT

The WM8993 provides a number of GPIO functions to enable interfacing and detection of external hardware and to provide logic outputs to other devices. The input functions can be polled directly or can be used to generate an Interrupt (IRQ) event. The GPIO and Interrupt circuits support the following functions:

- Button detect (digital input)
- Accessory detection (MICBIAS current detection)
- Clock output (CLK_SYS divided by OPCLK_DIV)
- FLL Lock status output
- Temperature sensor output
- Control Write Sequencer status
- Logic '1' and logic '0' output
- Interrupt event (IRQ) output

GPIO1 CONTROL

The function of the GPIO1 pin can be selected using the GPIO1_SEL field. The available functions are described individually in the subsequent sections. Internal pull-up and pull-down resistors can be enabled for interfacing with external signal sources or push-buttons.

GPIO1 may be configured as an input. In this configuration, the GPIO1 is an input to the Interrupt function, with selectable de-bounce and polarity control. The associated interrupt bit is latched once set and can be polled at any time or used to generate Interrupt events. See "Interrupts" for more details of the Interrupt event handling.

The interrupt bit is latched once set; it is reset by writing a logic '1' to the GPIO1_EINT register bit. Debouncing is provided in order to avoid false event triggers. Note that TOCLK must be enabled when this input de-bouncing is required.

REGISTER ADDRESS	BIT	LABEL	DEFAULT	DESCRIPTION
R18 (12h)	0	GPIO1_EIN	0	GPIO1 interrupt
GPIO CTRL		Т		0 = interrupt not set
1				1 = interrupt is set
				Cleared when a '1' is written
R19 (13h)	5	GPIO1_PU	0	GPIO1 pull-up resistor enable
GPIO 1				0 = pull-up disabled
				1 = pull-up enabled
	4	GPIO1_PD	1	GPIO1 pull-down resistor enable
				0 = pull-down disabled
				1 = pull-down enabled

REGISTER ADDRESS	BIT	LABEL	DEFAULT	DESCRIPTION
	3:0	GPIO1_SEL	0000	GPIO1 function select
		[3:0]		0000 = GPIO input
				0001 = OPCLK
				0010 = Logic 0
				0011 = Logic 1
				0100 = FLL_LOCK
				0101 = TEMPOK
				0110 = Reserved
				0111 = IRQ
				1000 = MICBIAS1 current detect
				1001 = MICBIAS1 short circuit detect
				1010 = MICBIAS2 current detect
				1011 = MICBIAS short circuit detect
				11XX = Reserved
R20 (14h)	0	GPIO1_DB	0	GPIO1 input de-bounce
IRQ_DEBOU				0 = disabled
NCE				1 = enabled
R22 (16h)	5	IM_GPIO1_	0	GPIO1 interrupt mask
GPIOCTRL2		EINT		0 = do not mask interrupt
				1 = mask interrupt
R23 (17h)	0	GPIO1_POL	0	GPIO1 interrupt polarity
GPIO_POL				0 = active high
				1 = active low

Table 64 GPIO1 Configuration and Interrupt Control

BUTTON DETECT

The analogue input pins IN2LN and IN2RN support alternate functions as general purpose digital inputs GPI7 and GPI8 respectively. These digital signals are inputs to the Interrupt function, with selectable de-bounce and polarity control. The associated interrupt bits are latched once set and can be polled at any time or used as inputs to the IRQ output. See "Interrupts" for more details of the Interrupt event handling.

Note that button detect functionality can also be implemented on the GPIO1 pin, as described earlier.

The interrupt bits are latched once set; they are reset by writing a logic '1' to the _EINT register bits in Register R18 (12h). De-bouncing is provided in order to avoid false event triggers. Note that TOCLK must be enabled when this input de-bouncing is required.

REGISTER ADDRESS	BIT	LABEL	DEFAULT	DESCRIPTION
R18 (12h)	7	GPI8_EINT	0	GPI8 interrupt
GPIO CTRL				0 = interrupt not set
1				1 = interrupt is set
				Cleared when a '1' is written
	6	GPI7_EINT	0	GPI7 interrupt
				0 = interrupt not set
				1 = interrupt is set
				Cleared when a '1' is written
R20 (14h)	7	GPI8_DB	0	GPI8 input de-bounce
IRQ_DEBOU				0 = disabled
NCE				1 = enabled
	3	GPI7_DB	0	GPI7 input de-bounce
				0 = disabled
				1 = enabled

REGISTER ADDRESS	BIT	LABEL	DEFAULT	DESCRIPTION
R22 (16h)	6	IM_GPI8_EI	0	GPI8 interrupt mask
GPIOCTRL2		NT		0 = do not mask interrupt
				1 = mask interrupt
	4	GPI8_ENA	0	GPI8 input enable
				0 = disabled
				1 = enabled
	2	IM_GPI7_EI	0	GPI7 interrupt mask
		NT		0 = do not mask interrupt
				1 = mask interrupt
	0	GPI7_ENA	0	GPI7 input enable
				0 = disabled
				1 = enabled
R23 (17h)	7	GPI8_POL	0	GPI8 interrupt polarity
GPIO_POL				0 = active high
				1 = active low
	6	GPI7_POL	0	GPI7 interrupt polarity
				0 = active high
				1 = active low

 Table 65 Button Detect Interrupt Control

ACCESSORY DETECTION

Current detection is provided on each of the microphone bias sources MICBIAS1 and MICBIAS2. These can be configured to detect when an external accessory (such as a microphone) has been connected. The output voltage of each of the microphone bias sources is selectable. Two current detection threshold levels can be set; these thresholds are applicable to both microphone bias sources.

The logic signals from the current detect circuits may be output directly on the GPIO1 pin, and may also be used to generate Interrupt events. See "GPIO1 Control" for details of outputting the accessory detection flags on the GPIO1 pin.

The accessory detection circuits are inputs to the Interrupt function, with selectable de-bounce and polarity control. The associated interrupt bits are latched once set and can be polled at any time or used as inputs to the IRQ output. See "Interrupts" for more details of the Interrupt event handling.

The interrupt bits are latched once set; they are reset by writing a logic '1' to the _EINT register bits in Register R18 (12h). De-bouncing is provided in order to avoid false event triggers. Note that TOCLK must be enabled when this input de-bouncing is required.

REGISTER ADDRESS	BIT	LABEL	DEFAULT	DESCRIPTION
R1 (1h)	5	MICB2_ENA	0	Microphone Bias 2 Enable
Power				0 = OFF (high impedance output)
Management				1 = ON
(1)	4	MICB1_ENA	0	Microphone Bias 2 Enable
				0 = OFF (high impedance output)
				1 = ON
R58 (3Ah)	7:6	JD_SCTHR	00	Jack Detect (MICBIAS) Short Circuit threshold
MICBIAS		[1:0]		00 = 300uA
				01 = 600uA
				10 = 1200uA
				11 = 2400uA
				These values are for AVDD1=3.0V and scale proportionally with AVDD1.

REGISTER ADDRESS	BIT	LABEL	DEFAULT	DESCRIPTION
	5:4	JD_THR [1:0]	00	Jack Detect (MICBIAS) Current Detect threshold
				00 = 150uA
				01 = 300uA
				10 = 600uA
				11 = 1200uA
				These values are for AVDD1=3.0V and scale
				proportionally with AVDD1.
	2	JD_ENA	0	Jack Detect (MICBIAS) function enable
				0 = disabled
			0	1 = enabled
	1	MICB2_LVL	0	Microphone Bias 2 Voltage Control
				0 = 0.9 * AVDD1
	0		0	1 = 0.65 * AVDD1
	0	MICB1_LVL	0	Microphone Bias 1 Voltage Control 0 = 0.9 * AVDD1
				0 = 0.9 AVDD1 1 = 0.65 * AVDD1
D10 (10h)	15	JD2 SC EI	0	
R18 (12h) GPIO CTRL	15	NT	0	MICBIAS2 Short Circuit interrupt 0 = interrupt not set
				0 = interrupt not set 1 = interrupt is set
				Cleared when a '1' is written
	14	JD2_EINT	0	MICBIAS2 Current Detect interrupt
	14	JDZ_LINI	0	0 = interrupt not set
				1 = interrupt is set
				Cleared when a '1' is written
	10	JD1_SC_EI	0	MICBIAS1 Short Circuit interrupt
	10	NT	Ū	0 = interrupt not set
				1 = interrupt is set
				Cleared when a '1' is written
	9	JD1_EINT	0	MICBIAS1 Current Detect interrupt
		_		0 = interrupt not set
				1 = interrupt is set
				Cleared when a '1' is written
R20 (14h)	15	JD2_SC_DB	0	MICBIAS2 Short Circuit de-bounce
IRQ_DEBOU				0 = disabled
NCE				1 = enabled
	14	JD2_DB	0	MICBIAS2 Current Detect de-bounce
				0 = disabled
				1 = enabled
	10	JD1_SC_DB	0	MICBIAS1 Short Circuit de-bounce
				0 = disabled
				1 = enabled
	9	JD1_DB	0	MICBIAS1 Current Detect de-bounce
				0 = disabled
				1 = enabled
R22 (16h)	13	IM_JD2_EIN	0	MICBIAS2 Current Detect interrupt mask
GPIOCTRL2		Т		0 = do not mask interrupt
				1 = mask interrupt
	12	IM_JD2_SC	0	MICBIAS2 Short Circuit interrupt mask
		_EINT		0 = do not mask interrupt
				1 = mask interrupt

REGISTER ADDRESS	BIT	LABEL	DEFAULT	DESCRIPTION
	10	IM_JD1_SC	0	MICBIAS1 Short Circuit interrupt mask
		_EINT		0 = do not mask interrupt
				1 = mask interrupt
	9	IM_JD1_EIN	0	MICBIAS1 Current Detect interrupt mask
		Т		0 = do not mask interrupt
				1 = mask interrupt
R23 (17h)	15	JD2_SC_PO	0	MICBIAS2 Short Circuit interrupt polarity
GPIO_POL		L		0 = active high
				1 = active low
	14	JD2_POL	0	MICBIAS2 Current Detect interrupt polarity
				0 = active high
				1 = active low
	10	JD1_SC_PO	0	MICBIAS1 Short Circuit interrupt polarity
		L		0 = active high
				1 = active low
	9	JD1_POL	0	MICBIAS1 Current Detect interrupt polarity
				0 = active high
				1 = active low

Table 66 MICBIAS Enable and Interrupt Control

The MICBIAS current detect function is enabled by setting the JD_ENA register bit. When this function is enabled, two current thresholds can be defined, using the JD_THR and JD_SC_THR registers. When a change in MICBIAS current which crosses either threshold is detected, then an interrupt event can be generated. In a typical application, accessory insertion would be detected when the MICBIAS current exceeds JD_THR, and microphone hookswitch operation would be detected when the MICBIAS current exceeds JD_SCTHR.

The current detect threshold functions are both inputs to the Interrupt control circuit and can be used to trigger an Interrupt event when either threshold is crossed. Both events can also be indicated as an output on a GPIO pin - see "GPIO1 Control".

When GPIO1_SEL = 1000, 1001, 1010 or 1011, the selected Jack Detect status indication is output on the GPIO1 pin. A logic 1 indicates that the associated Jack Detect is asserted. Note that the polarity is not programmable for GPIO output; the GPIO1_POL field and the polarity select bits in Table 66 affect the Interrupt behaviour only.

In a typical application, microphone insertion would be detected when the MICBIAS current exceeds the Current Detect threshold set by JD_THR.

When the JDn_POL interrupt polarity bit is set to 0, then microphone insertion detection will cause the JDn_EINT interrupt status register to be set. ('n' = 1 for MICBIAS1, 2 for MICBIAS2.)

For detection of microphone removal, the JDn_POL bit should be set to 1. When the JDn_POL interrupt polarity bit is set to 1, then microphone removal detection will cause the JDn_EINT interrupt status register to be set.

Microphone hook switch operation is detected when the MICBIAS current exceeds the Short Circuit Detect threshold set by JD_SCTHR.

When the JDn_SC_POL interrupt polarity bit is set to 0, then hook switch operation will cause the JDn_SC_EINT interrupt status register to be set.

For detection of microphone removal, the JDn_SC_POL bit should be set to 1. When the JDn_SC_POL interrupt polarity bit is set to 1, then hook switch release will cause the JDn_SC_EINT interrupt status register to be set.

CLOCK OUTPUT

A clock output (OPCLK) derived from CLK_SYS may be output on the GPIO1 pin. This clock is enabled by register bit OPCLK_ENA, and its frequency is controlled by OPCLK_DIV.

See "Clocking and Sample Rates" for more details of the System Clock, CLK_SYS. See "GPIO1 Control" for details of GPIO1 output of OPCLK.

REGISTER ADDRESS	BIT	LABEL	DEFAULT	DESCRIPTION
R2 (02h)	11	OPCLK_EN	0b	GPIO Clock Output Enable
Power		А		0 = disabled
Management (2)				1 = enabled
R6 (06h)	12:9	OPCLK_DIV	0000	GPIO Output Clock Divider
Clocking 1				0000 = CLK_SYS
				0001 = CLK_SYS / 2
				0010 = CLK_SYS / 3
				0011 = CLK_SYS / 4
				0100 = CLK_SYS / 5.5
				0101 = CLK_SYS / 6
				0110 = CLK_SYS / 8
				0111 = CLK_SYS / 12
				1000 = CLK_SYS / 16
				1001 to 1111 = Reserved

Table 67 OPCLK Control

FLL LOCK STATUS OUTPUT

The WM8993 maintains a flag indicating the lock status of the FLL, which may be used to control other events if required. The FLL Lock status may be output directly on the GPIO1 pin, and may also be used to generate Interrupt events. See "GPIO1 Control" for details of outputting the FLL Lock flag on the GPIO1 pin. See "Clocking and Sample Rates" for more details of the FLL.

The FLL Lock signal is an input to the Interrupt function, with selectable de-bounce and polarity control. The associated interrupt bit is latched once set and can be polled at any time or used to trigger the IRQ output. See "Interrupts" for more details of the Interrupt event handling.

The interrupt bit is latched once set; it is reset by writing a logic '1' to the FLL_LOCK_EINT register bit. De-bouncing is provided in order to avoid false event triggers. Note that TOCLK must be enabled when this input de-bouncing is required.

REGISTER ADDRESS	BIT	LABEL	DEFAULT	DESCRIPTION
R18 (12h)	8	FLL_LOCK_	0	FLL Lock interrupt
GPIO CTRL		EINT		0 = interrupt not set
1				1 = interrupt is set
				Cleared when a '1' is written
R20 (14h)	8	FLL_LOCK_	0	FLL Lock de-bounce
IRQ_DEBOU		DB		0 = disabled
NCE				1 = enabled
R22 (16h)	8	IM_FLL_LO	0	FLL Lock interrupt mask
GPIOCTRL2	RL2 CK_EINT			0 = do not mask interrupt
				1 = mask interrupt
R23 (17h)	8	FLL_LOCK_	0	FLL Lock interrupt polarity
GPIO_POL		POL		0 = active high (interrupt is triggered when FLL Lock is reached)
				1 = active low (interrupt is triggered when FLL is not locked)

Table 68 FLL Lock Interrupt Control

The FLL Lock signal is asserted when FLL Lock has been reached. When configured to generate an interrupt event, the default value of FLL_LOCK_POL will cause an interrupt event when FLL Lock has been reached.

When GPIO1_SEL = 0100, the FLL Lock signal is output on the GPIO1 pin. A logic 1 indicates that FLL Lock has been reached. Note that the polarity is not programmable for GPIO output; the GPIO1_POL and FLL_LOCK_POL fields affect the Interrupt behaviour only.

TEMPERATURE SENSOR OUTPUT

The WM8993 incorporates a temperature sensor which detects when the device temperature is within normal limits or if the device is approaching a hazardous temperature condition. The temperature status may be output directly on the GPIO1 pin, and may also be used to generate Interrupt events. See "GPIO1 Control" for details of outputting the Temp OK flag on the GPIO1 pin.

The temperature sensor signal is an input to the Interrupt function, with selectable de-bounce and polarity control. The associated interrupt bit is latched once set and can be polled at any time or used to trigger the IRQ output. See "Interrupts" for more details of the Interrupt event handling.

The interrupt bit is latched once set; it is reset by writing a logic '1' to the TEMPOK_EINT register bit. De-bouncing is provided in order to avoid false event triggers. Note that TOCLK must be enabled when this input de-bouncing is required.

Note that the temperature sensor can be configured to automatically disable the audio outputs of the WM8993 (see "Thermal Shutdown"). In some applications, it may be preferable to manage the temperature sensor event through GPIO or Interrupt functions, allowing a host processor to implement a controlled system response to an over-temperature condition.

The temperature sensor must be enabled by setting the TSHUT_ENA register bit. When the TSHUT_OPDIS is also set, then a device over-temperature condition will cause the speaker outputs (SPKOUTL and SPKOUTR) of the WM8993 to be disabled.

REGISTER ADDRESS	BIT	LABEL	DEFAULT	DESCRIPTION
R2 (02h)	14	TSHUT_EN	1	Thermal sensor enable
Power		A		0 = disabled
Management				1 = enabled
(2)	13	TSHUT_OP	1	Thermal shutdown control
		DIS		(Causes audio outputs to be disabled if an overtemperature occurs. The thermal sensor must also be enabled.)
				0 = disabled
				1 = enabled
R18 (12h)	11	TEMPOK_EI	0	Temp OK interrupt
GPIO CTRL 1		NT		0 = interrupt not set
				1 = interrupt is set
				Cleared when a '1' is written
R20 (14h)	11	TEMPOK_D	0	Temp OK de-bounce
IRQ_DEBOU		В		0 = disabled
NCE				1 = enabled
R22 (16h)	11	IM_TEMPO	0	Temp OK interrupt mask
GPIOCTRL2		K_EINT		0 = do not mask interrupt
				1 = mask interrupt
R23 (17h)	11	TEMPOK_P	1	Temp OK interrupt polarity
GPIO_POL		OL		0 = active high (interrupt is triggered when temperature is normal)
				1 = active low (interrupt is triggered when over-temperature)

Table 69 Temperature Sensor Enable and Interrupt Control

The Temperature Sensor output is asserted when the device is within normal operating limits. When configured to generate an interrupt event, the default value of TEMPOK_POL will cause an interrupt event when an overtemperature condition has been reached.

When GPIO1_SEL = 0101, the Temperature Sensor status is output on the GPIO1 pin. A logic 0 indicates that an overtemperature condition has been reached. Note that the polarity is not programmable for GPIO output; the GPIO1_POL and TEMPOK_POL fields affect the Interrupt behaviour only.

CONTROL WRITE SEQUENCER STATUS

The WM8993 Control Write Sequencer (WSEQ) can be used to execute a sequence of register write operations in response to a simple trigger event. When the Control Write Sequencer is executing a sequence, normal access to the register map via the Control Interface is restricted. The WM8993 generates a signal indicating the status of the Control Write Sequencer. The WSEQ_BUSY register bit indicates if the sequencer is busy, or if it has completed the commanded sequence. The WEQ_BUSY bit can be polled at any time.

The WSEQ_BUSY bit is an input to the GPIO/Interrupt function, with selectable de-bounce and polarity control. The associated interrupt bit is latched once set and can be used to trigger the IRQ output. See "Interrupts" for more details of the Interrupt event handling.

The interrupt bit is latched once set; it is reset by writing a logic '1' to the WSEQ_EINT register bit. Debouncing is provided in order to avoid false event triggers. Note that TOCLK must be enabled when this input de-bouncing is required. Note that the read value of WSEQ_EINT is not valid whilst the Write Sequencer is Busy.

REGISTER ADDRESS	BIT	LABEL	DEFAULT	DESCRIPTION
R18 (12h)	13	WSEQ_EIN	0	Write Sequence interrupt
GPIO CTRL		Т		0 = interrupt not set
1				1 = interrupt is set
				Cleared when a '1' is written.
				Note that the read value of WSEQ_EINT is not valid whilst the Write Sequencer is Busy.
R20 (14h)	13	WSEQ_DB	0	Write Sequencer de-bounce
IRQ_DEBOU				0 = disabled
NCE				1 = enabled
R22 (16h)	1	IM_WSEQ_	0	Write Sequencer interrupt mask
GPIOCTRL2		EINT		0 = do not mask interrupt
				1 = mask interrupt
R23 (17h)	13	WSEQ_POL	0	Write Sequencer interrupt polarity
GPIO_POL				0 = active high (interrupt is triggered when WSEQ is busy)
				1 = active low (interrupt is triggered when WSEQ is idle)
R74 (4Ah)	0	WSEQ_BUS	0	Sequencer Busy flag (Read Only).
Write		Y		0 = Sequencer idle
Sequencer 4				1 = Sequencer busy
				Note: it is not possible to write to control registers via the control interface while the Sequencer is Busy.

 Table 70 Control Write Sequencer Interrupt Control

The Control Write Sequencer status output is asserted when the sequencer is busy. In order to generate an interrupt event indicating that the sequencer has completed its tasks, WSEQ_POL must be set to '1'.

LOGIC '1' AND LOGIC '0' OUTPUT

The GPIO1 pin can be programmed to drive a logic high or logic low signal. See "GPIO1 Control" for details of GPIO1 register control fields.

INTERRUPTS

The interrupt status flag IRQ is asserted when any un-masked interrupt input is asserted. It represents the OR'd combination of all the un-masked interrupt inputs. If required, this flag may be inverted using the IRQ_POL register bit. The IRQ flag can be polled at any time, or may be output directly on the GPIO1 pin.

An interrupt can be generated by any of the following events described earlier:

- Button detect input (on GPIO1, GPI7 or GPI8)
- Accessory detection (MICBIAS1 or MICBIAS2 current / short circuit detect)
- FLL Lock
- Temperature Sensor
- Control Write Sequencer

The interrupt events are indicated by the _EINT register fields described earlier. The interrupt event flags are latched once set; they are reset by writing a logic '1' to the _EINT register bit. Each of these can be masked as an input to the IRQ function by setting the associated IM_ register field. Note that the _EINT register fields are always valid, regardless of the setting of the associated IM_ register fields.

The interrupt behaviour is driven by edge detection (not level detection) of the un-masked inputs. Therefore, if an input remains asserted after the interrupt register has been reset, then the interrupt status flag IRQ will not be triggered again. Note that once the IRQ flag is latched then all subsequent trigger events will be ignored until it has been reset – see Figure 34.

See "GPIO1 Control" for details of outputting IRQ on the GPIO1 pin.

REGISTER ADDRESS	BIT	LABEL	DEFAULT	DESCRIPTION
R18 (12h) GPIO CTRL 1	12	IRQ	0	Interrupt status (IRQ) Polarity is determined by IRQ_POL This bit is read only.
R23 (17h) GPIO_POL	12	IRQ_POL	1	Interrupt status (IRQ) polarity 0 = active high 1 = active low

Table 71 Interrupt (IRQ) Control

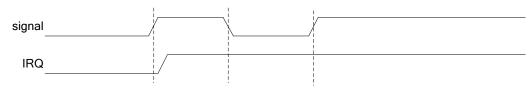


Figure 34 GPIO Latch

Figure 35 GPIO De-bounce

GPIO SUMMARY

Details of the GPIO implementation are shown below. When the GPIO pad is configured as an output, the corresponding input is disabled, as shown in Figure 36 below. This avoids an unstable loop condition.

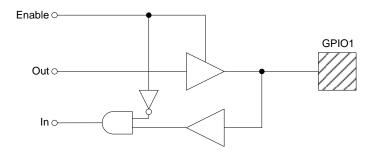


Figure 36 GPIO Pad

The GPIO register, i.e. latch structure, is shown in Figure 37 below. The illustration describes the GPIO1 functionality; the equivalent logic applies to the other GPIO functions also (eg. FLL_LOCK, TEMPOK, Jack Detect).

In the example illustrated, the de-bounce control field GPIO1_DB determines whether the signal is debounced or not. (Note that TOCLK needs to be present in order for the de-bounce circuit to work.) The polarity bit GPIO1_POL controls whether an interrupt is triggered by a logic 1 level (for GPIO1_POL = 0) or a logic 0 level (for GPIO1_POL = 1). The latch will cause the interrupt to be stored until it is reset by writing to the Interrupt Register. The latched signal is passed to the IRQ circuit, shown in Figure 38. The interrupt status bits can be read at any time from Register R18 (12h). The interrupt status bits are reset by writing a logic 1 to the respective bit in Register R18 (12h).

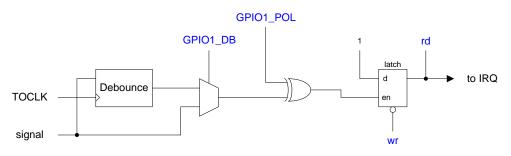
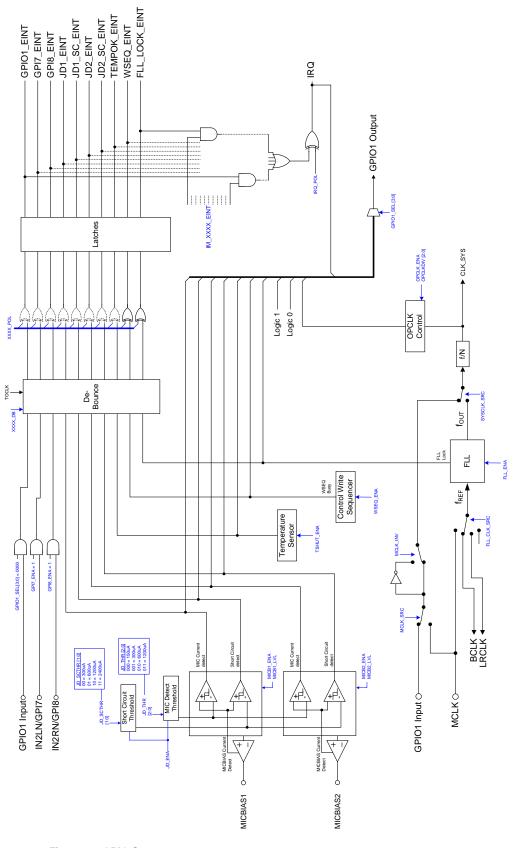



Figure 37 GPIO Function

The overall GPIO and Interrupt function is illustrated in Figure 38.

DIGITAL AUDIO INTERFACE

The digital audio interface is used for inputting DAC data to the WM8993 and outputting ADC data from it. The digital audio interface uses four pins:

- ADCDAT: ADC data output
- DACDAT: DAC data input
- LRCLK: Left/Right data alignment clock
- BCLK: Bit clock, for synchronisation

The clock signals BCLK and LRCLK can be outputs when the WM8993 operates as a master, or inputs when it is a slave (see Master and Slave Mode Operation, below).

Four different audio data formats are supported:

- Left justified
- Right justified
- I²S
- DSP mode

All four of these modes are MSB first. They are described in the following sections. Refer to the "Signal Timing Requirements" section for timing information.

Time Division Multiplexing (TDM) is available in all four data format modes. The WM8993 can be programmed to send and receive data in one of two time slots.

Two variants of DSP mode are supported - 'Mode A' and 'Mode B'. PCM operation is supported using the DSP mode.

MASTER AND SLAVE MODE OPERATION

The WM8993 digital audio interface can operate as a master or slave as shown in Figure 39 and Figure 40.

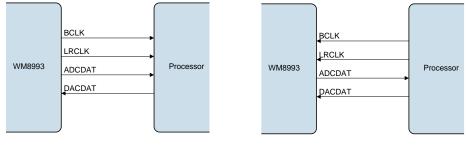
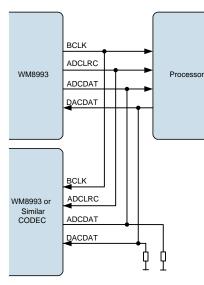


Figure 39 Master Mode

Figure 40 Slave Mode

The Audio Interface output control is illustrated above. The master mode control register AIF_MSTR1 determines whether the WM8993 generates the clock signals. The AIF_MSTR1 register field is defined in Table 72.

BCLK and LRCLK can be enabled as outputs in Slave mode, allowing mixed Master/Slave operation - see "Digital Audio Interface Control".



REGISTER ADDRESS	BIT	LABEL	DEFAULT	DESCRIPTION
R8 (08h)	15	AIF_MSTR1	0	Audio Interface 1 Master Mode Select
Audio				0 = Slave mode
Interface (3)				1 = Master mode

Table 72 Audio Interface Master/Slave Control

OPERATION WITH TDM

Time division multiplexing (TDM) allows multiple devices to transfer data simultaneously on the same bus. The WM8993 ADCs and DACs support TDM in master and slave modes for all data formats and word lengths. TDM is enabled and configured using register bits defined in the "Digital Audio Interface Control" section.

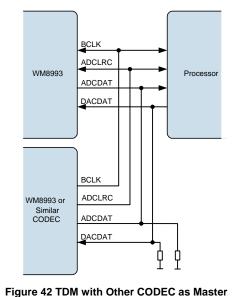


Figure 41 TDM with WM8993 as Master

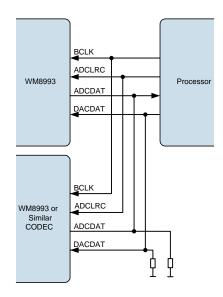


Figure 43 TDM with Processor as Master

Note: The WM8993 is a 24-bit device. If the user operates the WM8993 in 32-bit mode then the 8 LSBs will be ignored on the receiving side and not driven on the transmitting side. It is therefore recommended to add a pull-down resistor if necessary to the DACDAT line and the ADCDAT line in TDM mode.

BCLK FREQUENCY

The BCLK frequency is controlled relative to CLK_SYS by the BCLK_DIV divider. Internal clock divide and phase control mechanisms ensure that the BCLK and LRCLK edges will occur in a predictable and repeatable position relative to each other and relative to the data for a given combination of DAC/ADC sample rate and BCLK_DIV settings.

BCLK_DIV is defined in the "Digital Audio Interface Control" section. See also "Clocking and Sample Rates" section for more information.

AUDIO DATA FORMATS (NORMAL MODE)

The audio data modes supported by the WM8993 are described below. Note that the polarity of the BCLK and LRCLK signals can be inverted if required; the following descriptions all assume the default, non-inverted polarity of these signals.

In Right Justified mode, the LSB is available on the last rising edge of BCLK before a LRCLK transition. All other bits are transmitted before (MSB first). Depending on word length, BCLK frequency and sample rate, there may be unused BCLK cycles after each LRCLK transition.

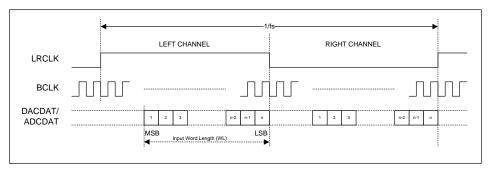
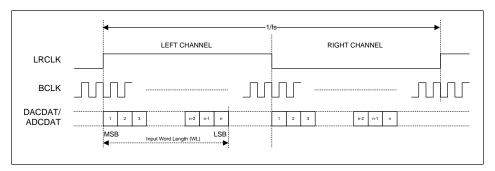
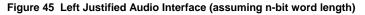




Figure 44 Right Justified Audio Interface (assuming n-bit word length)

In Left Justified mode, the MSB is available on the first rising edge of BCLK following a LRCLK transition. The other bits up to the LSB are then transmitted in order. Depending on word length, BCLK frequency and sample rate, there may be unused BCLK cycles before each LRCLK transition.

In I²S mode, the MSB is available on the second rising edge of BCLK following a LRCLK transition. The other bits up to the LSB are then transmitted in order. Depending on word length, BCLK

frequency and sample rate, there may be unused BCLK cycles between the LSB of one sample and the MSB of the next.

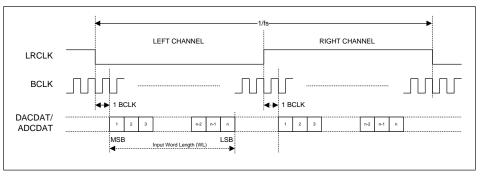


Figure 46 I2S Justified Audio Interface (assuming n-bit word length)

In DSP mode, the left channel MSB is available on either the 1st (mode B) or 2nd (mode A) rising edge of BCLK (selectable by AIF_LRCLK_INV) following a rising edge of LRCLK. Right channel data immediately follows left channel data. Depending on word length, BCLK frequency and sample rate, there may be unused BCLK cycles between the LSB of the right channel data and the next sample.

In device master mode, the LRC output will resemble the frame pulse shown in Figure 47 and Figure 48. In device slave mode, Figure 49 and Figure 50, it is possible to use any length of frame pulse less than 1/fs, providing the falling edge of the frame pulse occurs greater than one BCLK period before the rising edge of the next frame pulse.

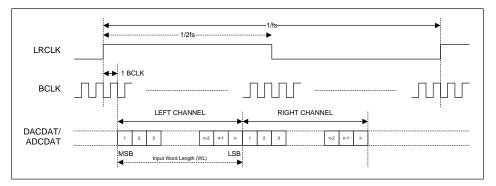
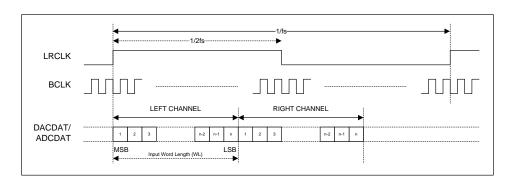
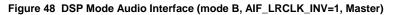




Figure 47 DSP Mode Audio Interface (mode A, AIF_LRCLK_INV=0, Master)

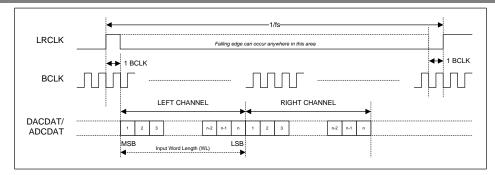


Figure 49 DSP Mode Audio Interface (mode A, AIF_LRCLK_INV=0, Slave)

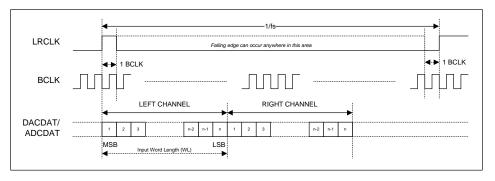


Figure 50 DSP Mode Audio Interface (mode B, AIF_LRCLK_INV=1, Slave)

PCM operation is supported in DSP interface mode. WM8993 ADC data that is output on the Left Channel will be read as mono PCM data by the receiving equipment. Mono PCM data received by the WM8993 will be treated as Left Channel data. This data may be routed to the Left/Right DACs as described in the "Digital Mixing" section.

AUDIO DATA FORMATS (TDM MODE)

TDM is supported in master and slave mode and is enabled by register bits AIF_ADC_TDM and AIF_DAC_TDM. All audio interface data formats support time division multiplexing (TDM) for ADC and DAC data.

Two time slots are available (Slot 0 and Slot 1), selected by register bits AIFADC_TDM_CHAN and AIFDAC_TDM_CHAN which control time slots for the ADC data and the DAC data.

When TDM is enabled, the ADCDAT pin will be tri-stated immediately before and immediately after data transmission, to allow another ADC device to drive this signal line for the remainder of the sample period. Note that it is important that two ADC devices do not attempt to drive the data pin simultaneously. A short circuit may occur if the transmission time of the two ADC devices overlap with each other. See "Audio Data Formats (TDM Mode)" for details of the ADCDAT output relative to BCLK signal. Note that it is possible to ensure a gap exists between transmissions by setting the transmitted word length to a value higher than the actual length of the data. For example, if 32-bit word length is selected where only 24-bit data is available, then the WM8993 interface will tri-state after transmission of the 24-bit data, ensuring a gap after the WM8993's TDM slot.

When TDM is enabled, BCLK frequency must be high enough to allow data from both time slots to be transferred. The relative timing of Slot 0 and Slot 1 depends upon the selected data format as shown in Figure 51 to Figure 55.

	•		1/	fs			
		LEFT CHANNEL			RIGHT CHANNEL	-	
LRCLK							
BCLK				····		······	
DACDAT/ ADCDAT		SLOT 0	SLOT 1		SLOT 0	SLOT 1	

Figure 51 TDM in Right-Justified Mode

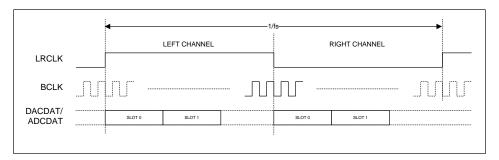


Figure 52 TDM in Left-Justified Mode

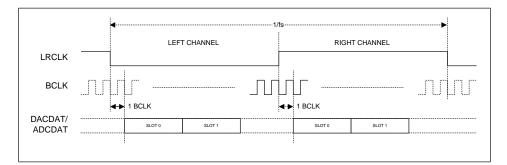


Figure 53 TDM in I²S Mode

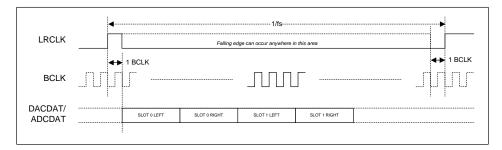


Figure 54 TDM in DSP Mode A

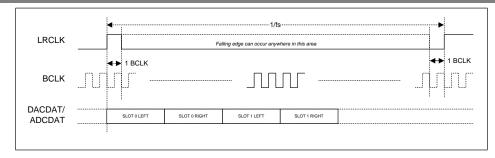


Figure 55 TDM in DSP Mode B

DIGITAL AUDIO INTERFACE CONTROL

The register bits controlling audio data format, word length, left/right channel data source and TDM are summarised in Table 73.

REGISTER ADDRESS	BIT	LABEL	DEFAULT	DESCRIPTION
R4 (04h)	15	AIFADCL_SRC	0	Left Digital Audio interface source
Audio				0 = Left ADC data is output on left channel
Interface				1 = Right ADC data is output on left channel
(1)	14	AIFADCR_SRC	1	Right Digital Audio interface source
				0 = Left ADC data is output on right channel
				1 = Right ADC data is output on right channel
	13	AIFADC_TDM	0	ADC TDM Enable
				0 = Normal ADCDAT operation
				1 = TDM enabled on ADCDAT
	12	AIFADC_TDM_	0	ADCDAT TDM Channel Select
		CHAN		0 = ADCDAT outputs data on slot 0
				1 = ADCDAT output data on slot 1
	8	AIF_BCLK_INV	0	BCLK Invert
				0 = BCLK not inverted
				1 = BCLK inverted
				Note that AIF_BCLK_INV selects the BCLK polarity in Master mode and in Slave mode.
	7	AIF_LRCLK_IN	0	Right, left and I ² S modes – LRCLK polarity
		V		0 = normal LRCLK polarity
				1 = invert LRCLK polarity
				Note that AIF_LRCLK_INV selects the
				LRCLK polarity in Master mode and in Slave mode.
				DSP Mode – mode A/B select
				0 = MSB is available on 2nd BCLK rising edge after LRC rising edge (mode A)
				1 = MSB is available on 1st BCLK rising edge after LRC rising edge (mode B)
	6:5	AIF_WL [1:0]	10	Digital Audio Interface Word Length
				00 = 16 bits
				01 = 20 bits
				10 = 24 bits
				11 = 32 bits
				Note - see "Companding" for the selection of 8-bit mode.

REGISTER ADDRESS	BIT	LABEL	DEFAULT	DESCRIPTION
	4:3	AIF_FMT [1:0]	10	Digital Audio Interface Format
				00 = Right justified
				01 = Left justified
				10 = I ² S Format
				11 = DSP Mode
R5 (05h)	15	AIFDACL_SRC	0	Left DAC Data Source Select
Audio				0 = Left DAC outputs left interface data
Interface				1 = Left DAC outputs right interface data
(2)	14	AIFDACR_SRC	1	Right DAC Data Source Select
				0 = Right DAC outputs left interface data
				1 = Right DAC outputs right interface data
	13	AIFDAC_TDM	0	DAC TDM Enable
				0 = Normal DACDAT operation
				1 = TDM enabled on DACDAT
	12	AIFDAC_TDM_	0	DACDAT TDM Channel Select
		CHAN		0 = DACDAT data input on slot 0
				1 = DACDAT data input on slot 1

Table 73 Digital Audio Interface Data Control

AUDIO INTERFACE OUTPUT TRI-STATE

Register bit AIF_TRIS can be used to tri-state the audio interface pins as described in Table 74. All digital audio interface pins will be tri-stated by this function, regardless of the state of other registers which control these pin configurations.

REGISTER ADDRESS	BIT	LABEL	DEFAULT	DESCRIPTION
R9 (09h)	13	AIF_TRIS	0	Audio Interface Tristate
Audio				0 = Audio interface pins operate normally
Interface (4)				1 = Tristate all audio interface pins

Table 74 Digital Audio Interface Tri-State Control

BCLK AND LRCLK CONTROL

The audio interface can be programmed to operate in master mode or slave mode using the AIF_MSTR1 register bit.

In master mode, the BCLK and LRCLK signals are generated by the WM8993 when any of the ADCs or DACs is enabled. In slave mode, the BCLK and LRCLK clock outputs are disabled by default to allow another digital audio interface to drive these pins.

It is also possible to force the BCLK or LRCLK signals to be output using BCLK_DIR and LRCLK_DIR, allowing mixed master and slave modes.

The clock generators for the audio interface are enabled according to the control signals shown in Figure 56. The BCLK_DIR and LRCLK_DIR fields are defined in Table 75.

The BCLK output can be inverted using the AIF_BCLK_INV register bit. The LRCLK output can be inverted using the AIF_LRCLK_INV register control.

Note that in Slave mode, when BCLK is an input, the AIF_BCLK_INV register selects the polarity of the received BCLK signal. Under default conditions, DACDAT input is captured on the rising edge of BCLK, as illustrated in Figure 4. When AIF_BCLK_INV = 1, DACDAT input is captured on the falling edge of BCLK.

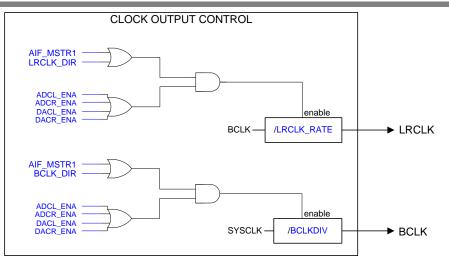


Figure 56 Digital Audio Interface Clock Control

REGISTER ADDRESS	BIT	LABEL	DEFAULT	DESCRIPTION
R4 (04h)	9	BCLK_DIR	0	BCLK Direction
Audio Interface (1)				(Forces BCLK clock to be output in slave mode)
				0 = BCLK normal operation
				1 = BCLK clock output enabled
R6 (06h)	4:1	BCLK_DIV	0100	BCLK Rate
Clocking (1)				0000 = CLK_SYS
				0001 = CLK_SYS / 1.5
				0010 = CLK_SYS / 2
				0011 = CLK_SYS / 3
				0100 = CLK_SYS / 4
				0101 = CLK_SYS / 5.5
				0110 = CLK_SYS / 6
				0111 = CLK_SYS / 8
				1000 = CLK_SYS / 11
				1001 = CLK_SYS / 12
				1010 = CLK_SYS / 16
				1011 = CLK_SYS / 22
				1100 = CLK_SYS / 24
				1101 = CLK_SYS / 32
				1110 = CLK_SYS / 44
				1111 = CLK_SYS / 48
R8 (08h)	15	AIF_MSTR1	0	Audio Interface 1 Master Mode Select
Audio				0 = Slave mode
Interface (3)				1 = Master mode

REGISTER ADDRESS	BIT	LABEL	DEFAULT	DESCRIPTION
R9 (09h) Audio Interface (4)	11	LRCLK_DIR	0	LRCLK Direction (Forces LRCLK clock to be output in slave mode) 0 = LRCLK normal operation 1 = LRCLK clock output enabled
	10:0	LRCLK_RATE [10:0]	040h	LRCLK Rate LRCLK clock output = BCLK / LRCLK_RATE Integer (LSB = 1) Valid from 8.2047

Table 75 Digital Audio Interface Clock Control

COMPANDING

The WM8993 supports A-law and μ -law companding on both transmit (ADC) and receive (DAC) sides as shown in Table 76.

REGISTER ADDRESS	BIT	LABEL	DEFAULT	DESCRIPTION
R5 (05h)	4	DAC_COMP	0	DAC Companding Enable
Audio				0 = disabled
Interface (2)				1 = enabled
	3	DAC_COMPMODE	0	DAC Companding Type
				0 = μ-law
				1 = A-law
	2	ADC_COMP	0	ADC Companding Enable
				0 = disabled
				1 = enabled
	1	ADC_COMPMODE	0	ADC Companding Type
				0 = μ-law
				1 = A-law

Table 76 Companding Control

Companding involves using a piecewise linear approximation of the following equations (as set out by ITU-T G.711 standard) for data compression:

 μ -law (where μ =255 for the U.S. and Japan):

 $F(x) = \ln(1 + \mu |x|) / \ln(1 + \mu) -1 \le x \le 1$

A-law (where A=87.6 for Europe):

F(x) = A x / (1 + InA)	$for x \leq 1/A$
F(x) = (1 + InA x) / (1 + InA)	} for $1/A \le x \le 1$

The companded data is also inverted as recommended by the G.711 standard (all 8 bits are inverted for μ -law, all even data bits are inverted for A-law). The data will be transmitted as the first 8 MSBs of data.

Companding converts 13 bits (μ -law) or 12 bits (A-law) to 8 bits using non-linear quantization. This provides greater precision for low amplitude signals than for high amplitude signals, resulting in a greater usable dynamic range than 8 bit linear quantization. The companded signal is an 8-bit word comprising sign (1 bit), exponent (3 bits) and mantissa (4 bits).

8-bit mode is selected whenever DAC_COMP=1 or ADC_COMP=1. The use of 8-bit data allows samples to be passed using as few as 8 BCLK cycles per LRCLK frame. When using DSP mode B, 8-bit data words may be transferred consecutively every 8 BCLK cycles.

8-bit mode (without Companding) may be enabled by setting DAC_COMPMODE=1 or ADC_COMPMODE=1, when DAC_COMP=0 and ADC_COMP=0.

BIT7	BIT[6:4]	BIT[3:0]
SIGN	EXPONENT	MANTISSA

 Table 77
 8-bit Companded Word Composition

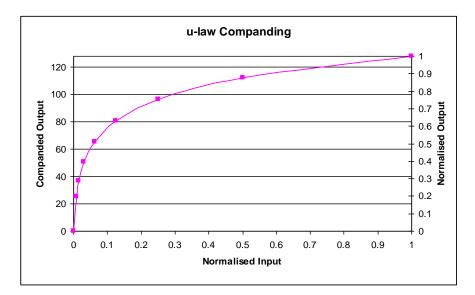


Figure 57 µ-Law Companding

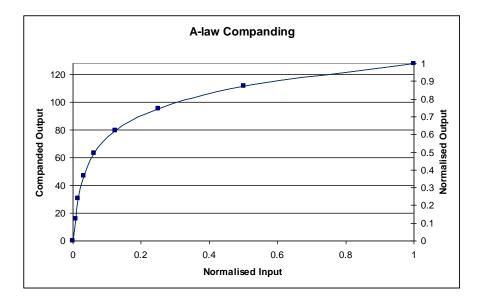


Figure 58 A-Law Companding

LOOPBACK

Setting the LOOPBACK register bit enables digital loopback. When this bit is set, the ADC digital data output is routed to the DAC digital data input path. The digital audio interface input (DACDAT) is not used when LOOPBACK is enabled.

REGISTER ADDRESS	BIT	LABEL	DEFAULT	DESCRIPTION
R5 (05h)	0	LOOPBACK	0	Digital Loopback Function
Audio				0 = No loopback
Interface (2)				1 = Loopback enabled (ADC data output is directly input to DAC data input).

Table 78 Loopback Control

Note: When the digital sidetone is enabled, ADC data will also be added to DAC digital data input path within the Digital Mixing circuit. This applies regardless of whether LOOPBACK is enabled.

DIGITAL PULL-UP AND PULL-DOWN

The WM8993 provides integrated pull-up and pull-down resistors on each of the MCLK, DACDAT, LRCLK and BCLK pins. This provides a flexible capability for interfacing with other devices. Each of the pull-up and pull-down resistors can be configured independently using the register bits described in Table 79.

REGISTER ADDRESS	BIT	LABEL	DEFAULT	DESCRIPTION
R122 (7Ah)	7	MCLK_PU	0	MCLK pull-up resistor enable
Digital Pulls				0 = pull-up disabled
				1 = pull-up enabled
	6	MCLK_PD	0	MCLK pull-down resistor enable
				0 = pull-down disabled
				1 = pull-down enabled
	5	DACDAT_PU	0	DACDAT pull-up resistor enable
				0 = pull-up disabled
				1 = pull-up enabled
	4	DACDAT_PD	0	DACDAT pull-down resistor enable
				0 = pull-down disabled
				1 = pull-down enabled
	3	LRCLK_PU	0	LRCLK pull-up resistor enable
				0 = pull-up disabled
				1 = pull-up enabled
	2	LRCLK_PD	0	LRCLK pull-down resistor enable
				0 = pull-down disabled
				1 = pull-down enabled
	1	BCLK_PU	0	BCLK pull-up resistor enable
				0 = pull-up disabled
				1 = pull-up enabled
	0	BCLK_PD	0	BCLK pull-down resistor enable
				0 = pull-down disabled
				1 = pull-down enabled

Table 79 Digital Audio Interface Pull-Up and Pull-Down Control

CLOCKING AND SAMPLE RATES

The internal clocks for the WM8993 are all derived from a common internal clock source, CLK_SYS. This clock is the reference for the ADCs, DACs, DSP core functions, digital audio interface, Class D switching amplifier, DC servo control and other internal functions.

CLK_SYS can either be derived directly from MCLK, or may be generated from a Frequency Locked Loop (FLL) using MCLK, BCLK or LRCLK as a reference. Many commonly-used audio sample rates can be derived directly from typical MCLK frequencies; the FLL provides additional flexibility for a wide range of MCLK frequencies. To avoid audible glitches, all clock configurations must be set up before enabling playback. The FLL can be used to generate a free-running clock in the absence of an external reference source; see "Frequency Locked Loop (FLL)" for further details.

The WM8993 supports Manual or Automatic clocking configuration modes. In Automatic mode, the programmable dividers associated with the ADCs, DACs, DSP core functions, Class D switching and DC servo are configured automatically, with values determined from the CLK_SYS_RATE and SAMPLE_RATE fields. In Automatic mode, the user must also configure the OPCLK (if required), the TOCLK (if required) and the digital audio interface. In Manual mode, the entire clocking configuration can be programmed according to the application requirements.

The ADC and DAC sample rates are independently selectable, relative to CLK_SYS, using ADC_DIV and DAC_DIV. These fields must be set according to the required sampling frequency. Oversample rates of 64fs or 128fs are supported (based on a 48kHz sample rate).

A 256kHz clock, supporting a number of internal functions, is derived from CLK_SYS, via a programmable divider CLK_256K_DIV.

The DC servo control is clocked from CLK_SYS, via a programmable divider CLK_DCS_DIV.

The Class D switching amplifier is clocked from CLK_SYS, via a programmable divider DCLK_DIV.

A GPIO Clock, OPCLK, can be derived from CLK_SYS and output on the GPIO1 pin to provide clocking to other devices. This clock is enabled by OPCLK_ENA and controlled by OPCLK_DIV.

A slow clock, TOCLK, is used to de-bounce the button/accessory detect inputs, and to set the timeout period for volume updates when zero-cross detect is used. This clock is enabled by TOCLK_ENA and controlled by TOCLK_RATE, TOCLK_RATE_X4 and TOCLK_RATE_DIV16.

In master mode, BCLK is derived from CLK_SYS via a programmable divider set by BCLK_DIV. In master mode, the LRCLK is derived from BCLK via a programmable divider LRCLK_RATE. The LRCLK can be derived from an internal or external BCLK source, allowing mixed master/slave operation.

The control registers associated with Clocking and Sample Rates are shown in Table 80 to Table 85.

The overall clocking scheme for the WM8993 is illustrated in Figure 59.

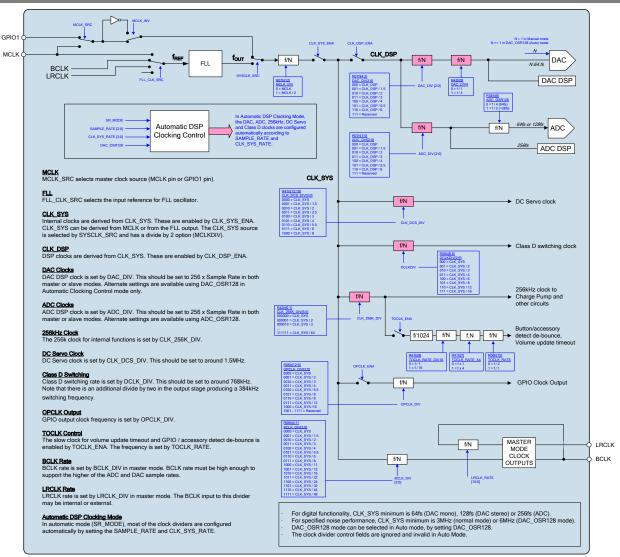


Figure 59 Clocking Scheme

CLK_SYS CONTROL

The MCLK_SRC bit is used to select the MCLK source. The source may be either MCLK or GPIO1. The selected source may also be inverted by setting the register bit MCLK_INV. Note that it is not recommended to change the control bit MCLK_INV while the WM8993 is processing data as this may lead to clocking glitches and signal pop and clicks.

The SYSCLK_SRC bit is used to select the source for CLK_SYS. The source may be either the selected MCLK source or the FLL output. The selected source may also be adjusted by the MCLK_DIV divider to generate CLK_SYS. These register fields are described in Table 80. See "Frequency Locked Loop (FLL)" for more details of the Frequency Locked Loop clock generator.

Note that, in AIF Slave modes (see "Digital Audio Interface"), it is important to ensure that CLK_SYS is synchronised with the LRCLK input. This can be achieved by selecting an MCLK input that is derived from the same reference as the LRCLK, or can be achieved by selecting the external BCLK or LRCLK signals as a reference input to one of the FLLs, as a source for CLK_SYS.

If CLK_SYS is not synchronised with LRCLK, then clicks arising from dropped or repeated audio samples will occur, due to the inherent tolerances of multiple, asynchronous, system clocks.

The CLK_SYS signal is enabled by register bit CLK_SYS_ENA. This bit should be set to 0 when reconfiguring clock sources. It is not recommended to change MCLK_SRC or SYSCLK_SRC while the CLK_SYS_ENA bit is set.

The following operating frequency limits must be observed when configuring CLK_SYS. Failure to observe these limits will result in degraded noise performance and/or incorrect ADC/DAC functionality.

- CLK_SYS ≤ 12.288MHz
- $CLK_SYS \ge 3MHz$
- If DAC_OSR128 = 1 (Automatic Mode only), then $CLK_SYS \ge 6MHz$
- If DAC_MONO = 1, then $CLK_SYS \ge 64 x fs$
- If DAC_MONO = 0, then $CLK_SYS \ge 128 \text{ x fs}$
- If ADCL_ENA = 1 or ADCR_ENA = 1 then $CLK_SYS \ge 256 x \text{ fs}$

Note that DAC Mono mode (DAC_MONO = 1) is only valid when one or other DAC is disabled. If both DACs are enabled, then the minimum CLK_SYS for clocking the DACs is 128×150 .

The CLK_SYS control register f	fields are defined in Table 80.
--------------------------------	---------------------------------

REGISTER ADDRESS	BIT	LABEL	DEFAULT	DESCRIPTION
R7 (07h)	15	MCLK_SRC	0	MCLK Source Select
Clocking 2				0 = MCLK pin
				1 = GPIO1 pin
	14	SYSCLK_SRC	0	CLK_SYS Source Select
				0 = MCLK
				1 = FLL output
	12	MCLK_DIV	0	MCLK Divider
				0 = MCLK
				1 = MCLK / 2
	10	MCLK_INV	0b	MCLK Invert
				0 = MCLK not inverted
				1 = MCLK inverted
R69 (45h)	1	CLK_SYS_ENA	1	CLK_SYS enable
Bus Control				0 = disabled
1				1 = enabled

Table 80 MCLK and CLK_SYS Control

AUTOMATIC CLOCKING CONFIGURATION

The WM8993 supports a wide range of standard audio sample rates from 8kHz to 48kHz. The Automatic Clocking Configuration mode simplifies the configuration of the clock dividers in the WM8993 by deriving most of the necessary parameters from a minimum number of user registers.

Automatic Clocking Configuration mode is selected by the SR_MODE bit. When Automatic mode is selected (SR_MODE = 0), some of the Manual clocking configuration registers are invalid and ignored. The affected registers are indicated in Table 82 and Table 83.

In Automatic mode, the SAMPLE_RATE field selects the sample rate, fs, of the ADC and DAC. Note that, in Automatic mode, the same sample rate always applies to the ADC and DAC.

In Automatic mode, the CLK_SYS_RATE field must be set according to the ratio of CLK_SYS to fs.

In Automatic mode, a high performance mode of DAC operation can be selected by setting the DAC_OSR128 bit; in 48kHz sample mode, the DAC_OSR128 feature results in 128x oversampling. Audio performance is improved, but power consumption is also increased.

In both Manual and Automatic modes, the CLK_SYS_RATE register must be set; this determines the operating behaviour of the headphone amplifier Charge Pump circuit.

REGISTER ADDRESS	BIT	LABEL	DEFAULT	DESCRIPTION
R10 (0Ah)	13	DAC_OSR128	0	DAC Oversample Rate Select
DAC CTRL				0 = disabled
				1 = enabled
				For 48kHz sample rate, the DAC oversample rate is 128fs when DAC_OSR128 is selected.
				This is valid in Automatic mode only. The default is 64fs.
R65 (41h)	9:7	SAMPLE_RATE	101	Selects the Sample Rate (fs)
Clocking 3		[2:0]		000 = 8kHz
				001 = 11.025kHz, 12kHz
				010 = 16kHz
				011 = 22.05kHz, 24kHz
				100 = 32kHz
				101 = 44.1kHz, 48kHz
	4:1	CLK_SYS_RAT	0011	Selects the CLK_SYS / fs ratio
		E [3:0]		0000 = 64
				0001 = 128
				0010 = 192
				0011 = 256
				0100 = 384
				0101 = 512
				0110 = 768
				0111 = 1024
				1000 = 1408
				1001 = 1536
R66 (42h)	0	SR_MODE	1	Selects Clocking Configuration mode
Clocking 4				0 = Automatic
				1 = Manual

Table 81 Automatic Clocking Configuration Control

ADC / DAC CLOCK CONTROL

The clocking of the ADC and DAC circuits is derived from CLK_DSP. This signal is generated from CLK_SYS and is separately enabled, using the register bit CLK_SYS_ENA.

The ADC and DAC sample rates are independently selectable, relative to CLK_DSP. The programmable dividers allow selection of the commonly used sample rates from typical audio system clocking frequencies (eg. 12.288MHz). In Manual Clocking Configuration mode, these are controlled using the register bits described in Table 82. In Automatic Clocking Configuration mode, the ADC and DAC clocking dividers are configured automatically by the WM8993.

The ADC_DIV register controls the ADC clocking rate. The ADC_DIV register should be set to derive 256 x fs from CLK_DSP, where fs is the ADC sampling rate (eg. 48kHz).

Two modes of ADC operation can be selected using the ADC_OSR128 bit; in 48kHz sample mode, setting the ADC_OSR128 bit results in 128x oversampling. This bit is enabled by default, giving best audio performance. Deselecting this bit gives 64x oversampling in 48kHz mode, resulting in decreased power consumption.

The DAC_DIV and the DAC_DIV4 registers control the DAC clocking rate. For normal operation, DAC_DIV4 is set, and the DAC_DIV register should be set to derive 256 x fs from CLK_DSP, where fs is the DAC sampling rate.

Higher performance DAC operation can be achieved by increasing the DAC oversample rate. This is available in Automatic Clocking Configuration mode only - see Table 81.

The ADC / DAC Clock Control registers are defined in Table 82.

In Manual Clocking Configuration mode, all of these registers may be controlled.

In Automatic Clocking Configuration mode, the CLK_SYS_ENA field must be set by the user. The ADC_OSR128 bit may be selected if required. The remaining ADC / DAC Clock Control registers are ignored and invalid in Automatic mode.

REGISTER ADDRESS	BIT	LABEL	DEFAULT	DESCRIPTION
R7 (07h)	7:5	ADC_DIV [2:0]	000	ADC Sample Rate Divider
Clocking 2				000 = CLK_SYS / 1
				001 = CLK_SYS / 1.5
				010 = CLK_SYS / 2
				011 = CLK_SYS / 3
				100 = CLK_SYS / 4
				101 = CLK_SYS / 5.5
				110 = CLK_SYS / 6
				111= Reserved
				Note - this field is ignored and invalid in Automatic Clocking Configuration mode.
	4:2	DAC_DIV [2:0]	000	DAC Sample Rate Divider
				000 = CLK_SYS / 1
				001 = CLK_SYS / 1.5
				010 = CLK_SYS / 2
				011 = CLK_SYS / 3
				100 = CLK_SYS / 4
				101 = CLK_SYS / 5.5
				110 = CLK_SYS / 6
				111= Reserved
				Note - this field is ignored and invalid in Automatic Clocking Configuration mode.

REGISTER ADDRESS	BIT	LABEL	DEFAULT	DESCRIPTION
R14 (0Eh)	9	ADC_OSR128	1	ADC Oversample Rate Select
ADC CTRL				0 = disabled
				1 = enabled
				For 48kHz sample rate, the ADC oversample rate is 128fs when ADC_OSR128 is selected. Setting this bit to 0 selects 64fs mode.
				Default is 128fs.
R65 (41h)	0	CLK_DSP_ENA	0	CLK_DSP enable
Clocking 3				0 = disabled
				1 = enabled
R66 (42h)	9	DAC_DIV4	1	DAC Divide-by-4 select
Clocking 4				0 = DAC_DIV
				1 = DAC_DIV / 4
				Note - this field is ignored and invalid in Automatic Clocking Configuration mode.

Table 82 ADC / DAC Clock Control

256K, DC SERVO, CLASS D CLOCK CONTROL

Clocking is required to support a variety of other functions on the WM8993, including the DC Servo and the Class D amplifier. In Manual Clocking Configuration mode, these are controlled using the register bits described in Table 83. In Automatic Clocking Configuration mode, these are configured automatically by the WM8993.

The DCLK_DIV register controls the Class D amplifier switching frequency. The DCLK_DIV register should be set to derive a clock frequency of around 768kHz. Note that there is an additional divide by two in the output stage producing a 384kHz switching frequency. The class D switching clock frequency should not be altered while the speaker output is active as this may generate an audible click.

The CLK_DCS_DIV register controls the DC Servo clocking frequency. The CLK_DCS_DIV register should be set to derive a clock frequency of around 1.5MHz.

The CLK_256K_DIV register controls the 256kHz clocking for other circuits, including the Control Write Sequencer. The CLK_256K_DIV register should be set to derive a clock frequency of around 256kHz.

REGISTER ADDRESS	BIT	LABEL	DEFAULT	DESCRIPTION
R6 (06h)	8:6	DCLK_DIV	111	Class D Clock Divider
Clocking 1		[2:0]		000 = CLK_SYS
				001 = CLK_SYS / 2
				010 = CLK_SYS / 3
				011 = CLK_SYS / 4
				100 = CLK_SYS / 6
				101 = CLK_SYS / 8
				110 = CLK_SYS / 12
				111 = CLK_SYS / 16
				Note - this field is ignored and invalid in Automatic Clocking Configuration mode.

REGISTER ADDRESS	BIT	LABEL	DEFAULT	DESCRIPTION
R65 (41h)	13:10	CLK_DCS_DIV	1000	DC Servo Clock Divider
Clocking 3		[3:0]		0000 = CLK_SYS
				0001 = CLK_SYS / 1.5
				0010 = CLK_SYS / 2
				0011 = CLK_SYS / 2.5
				0100 = CLK_SYS / 3
				0101 = CLK_SYS / 4
				0110 = CLK_SYS / 5.5
				0111 = CLK_SYS / 6
				1000 = CLK_SYS / 8
				Note - this field is ignored and invalid in Automatic Clocking Configuration mode.
R66 (42h)	6:1	CLK_256K_DIV	2Fh	256kHz Clock Divider
Clocking 4		[5:0]		0d = CLK_SYS
				1d = CLK_SYS / 2
				2d = CLK_SYS / 3
				63d = CLK_SYS / 64
				Note - this field is ignored and invalid in Automatic Clocking Configuration mode.

Table 83 256k, DC Servo, Class D Clock Control

OPCLK CONTROL

A clock output (OPCLK) derived from CLK_SYS may be output on the GPIO1 pin. This clock is enabled by register bit OPCLK_ENA, and its frequency is controlled by OPCLK_DIV.

This output of this clock is also dependent upon the GPIO register settings described under "General Purpose Input/Output".

REGISTER ADDRESS	BIT	LABEL	DEFAULT	DESCRIPTION
R2 (02h)	11	OPCLK_ENA	0b	GPIO Clock Output Enable
Power				0 = disabled
Manageme nt (2)				1 = enabled
R6 (06h)	12:9	OPCLK_DIV	0000b	GPIO Output Clock Divider
Clocking 1		[3:0]		0000 = CLK_SYS
				0001 = CLK_SYS / 2
				0010 = CLK_SYS / 3
				0011 = CLK_SYS / 4
				0100 = CLK_SYS / 5.5
				0101 = CLK_SYS / 6
				0110 = CLK_SYS / 8
				0111 = CLK_SYS / 12
				1000 = CLK_SYS / 16
				1001 to 1111 = Reserved

Table 84 OPCLK Control

TOCLK CONTROL

A slow clock (TOCLK) is derived from the internally generated 256kHz clock to enable input debouncing and volume update timeout functions. This clock is enabled by register bit TOCLK_ENA, and its frequency is controlled by TOCLK_RATE, TOCLK_RATE_X4, and TOCLK_RATE_DIV16, as described in Table 85.

A fixed division of 256kHz / 1024 is applied to generate TOCLK. The final TOCLK frequency may be a multiple or fraction of this frequency, according to the TOCLK_RATE, TOCLK_RATE_X4, and TOCLK_RATE_DIV16 register bits.

REGISTER ADDRESS	BIT	LABEL	DEFAULT	DESCRIPTION
R6 (06h)	15	TOCLK_RATE	0	TOCLK Rate Divider (/2)
Clocking 1				0 = f / 2
				1 = f / 1
	14	TOCLK_ENA	0	TOCLK Enable
				0 = disabled
				1 = enabled
R66 (42h)	8	TOCLK_RATE_	0	TOCLK Rate Divider (/16)
Clocking 4		DIV16		0 = f / 1
				1 = f / 16
	7	TOCLK_RATE_	0	TOCLK Rate Multiplier
		X4		0 = f x 1
				1 = f x 4

Table 85 TOCLK Control

A list of possible TOCLK rates is provided in Table 86.

TOCLK_RATE		TOCLK_RATE_DIV16	TOCLK		
TOCLK_KATE	IUCLK_KATE_A4	IUCLK_KATE_DIVIO	FREQ (HZ)	PERIOD (MS)	
1	1	0	1000	1	
0	1	0	500	2	
1	0	0	250	4	
0	0	0	125	8	
1	1	1	62.5	16	
0	1	1	31.25	32	
1	0	1	15.625	64	
0	0	1	7.8125	128	

Table 86 TOCLK Rates

BCLK AND LRCLK CONTROL

In master mode, BCLK is derived from CLK_SYS via a programmable division set by BCLK_DIV.

In master mode, LRCLK is derived from BCLK via a programmable division set by LRCLK_RATE. The BCLK input to this divider may be internal or external, allowing mixed master and slave modes.

The direction of these signals and the clock frequencies are controlled as described in the "Digital Audio Interface Control" section.

FREQUENCY LOCKED LOOP (FLL)

The integrated FLL can be used to generate CLK_SYS from a wide variety of different reference sources and frequencies. The FLL can use either MCLK, BCLK or LRCLK as its reference, which may be a high frequency (eg. 12.288MHz) or low frequency (eg. 32,768kHz) reference. The FLL is tolerant of jitter and may be used to generate a stable CLK_SYS from a less stable input signal. The FLL characteristics are summarised in "Electrical Characteristics".

Note that the FLL can be used to generate a free-running clock in the absence of an external reference source. This is described in the "Free-Running FLL Clock" section below.

The FLL control registers are illustrated in Figure 60.

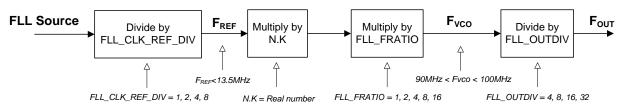


Figure 60 FLL Configuration

The FLL is enabled using the FLL_ENA register bit. Note that, when changing FLL settings, it is recommended that the digital circuit be disabled via FLL_ENA and then re-enabled after the other register settings have been updated. When changing the input reference frequency F_{REF} , it is recommended that the FLL be reset by setting FLL_ENA to 0.

Note that, for normal operation of the FLLs, the reference voltage VMID and the bias current must also be enabled. See "Reference Voltages and Master Bias" for details of the associated controls VMID_SEL and BIAS_ENA.

The field FLL_CLK_REF_DIV provides the option to divide the input reference (MCLK, BCLK or LRCLK) by 1, 2, 4 or 8. This field should be set to bring the reference down to 13.5MHz or below. For best performance, it is recommended that the highest possible frequency - within the 13.5MHz limit - should be selected.

The FLL output frequency is directly determined from FLL_FRATIO, FLL_OUTDIV and the real number represented by N.K. The integer value N is held in the FLL_N register field (LSB = 1), and is used in both Integer and Fractional Modes. The fractional portion, K, is only valid in Fractional Mode when enabled by the field FLL_FRAC. It is recommended that FLL_FRAC is enabled at all times.

In FLL Fractional Mode, the fractional portion of the N.K multiplier is held in the FLL_K register field. This field is coded as a fixed point quantity, where the MSB has a weighting of 0.5. Note that, if desired, the value of this field may be calculated by multiplying K by 2¹⁶ and treating FLL_K as an integer value, as illustrated in the following example:

If N.K = 8.192, then K = 0.192

Multiplying K by 2^{16} gives $0.192 \times 65536 = 12582.912$ (decimal)

Apply rounding to the nearest integer = 12583 (decimal) = 3127 (hex)

The FLL output frequency is generated according to the following equation:

 $F_{OUT} = (F_{VCO} / FLL_OUTDIV)$

The FLL operating frequency, F_{VCO} is set according to the following equation:

 $F_{VCO} = (F_{REF} \times N.K \times FLL_FRATIO)$

 F_{REF} is the input frequency, as determined by FLL_CLK_REF_DIV.

F_{VCO} must be in the range 90-100 MHz. Frequencies outside this range cannot be supported.

Note that the output frequencies that do not lie within the ranges quoted above cannot be guaranteed across the full range of device operating temperatures.

In order to follow the above requirements for F_{VCO} , the value of FLL_OUTDIV should be selected according to the desired output F_{OUT} , as described in Table 87.

OUTPUT FREQUENCY Fout	FLL_OUTDIV
2.8125 MHz - 3.125 MHz	4h (divide by 32)
5.625 MHz - 6.25 MHz	3h (divide by 16)
11.25 MHz - 12.5 MHz	2h (divide by 8)
22.5 MHz - 25 MHz	1h (divide by 4)

Table 87 Selection of FLL_OUTDIV

The value of FLL_FRATIO should be selected as described in Table 88.

REFERENCE FREQUENCY FREF	FLL_FRATIO
1MHz - 13.5MHz	0h (divide by 1)
256kHz - 1MHz	1h (divide by 2)
128kHz - 256kHz	2h (divide by 4)
64kHz - 128kHz	3h (divide by 8)
Less than 64kHz	4h (divide by 16)

Table 88 Selection of FLL_FRATIO

In order to determine the remaining FLL parameters, the FLL operating frequency, F_{VCO} , must be calculated, as given by the following equation:

 $F_{VCO} = (F_{OUT} \times FLL_OUTDIV)$

The value of FLL_N and FLL_K can then be determined as follows:

 $N.K = F_{VCO} / (FLL_FRATIO \times F_{REF})$

Note that F_{REF} is the input frequency, after division by FLL_CLK_REF_DIV, where applicable.

For best performance, FLL Fractional Mode should always be used. Therefore, if the calculations yield an integer value of N.K, then it is recommended to adjust FLL_FRATIO in order to obtain a non-integer value of N.K.

The register fields that control the FLL are described in Table 89. Example settings for a variety of reference frequencies and output frequencies are shown in Table 91.

REGISTER ADDRESS	BIT	LABEL	DEFAULT	DESCRIPTION
R60 (3Ch)	2	FLL_FRAC	0	Fractional enable
FLL Control 1				0 = Integer Mode
				1 = Fractional Mode
				1 recommended in all cases
	1	FLL_OSC_ENA	0	FLL Oscillator Enable
				0 = FLL disabled
				1 = FLL enabled
				(Note that this field is required for free-running FLL modes only)
	0	FLL_ENA	0	FLL Enable
				0 = FLL disabled
				1 = FLL enabled
R61 (3Dh)	10:8	FLL_OUTDIV	000	F _{OUT} clock divider
FLL Control 2		[2:0]		000 = 2
				001 = 4
				010 = 8
				011 = 16
				100 = 32
				101 = 64
				110 = 128
				111 = 256
				(F _{OUT} = F _{VCO} / FLL_OUTDIV)
	2:0	FLL_FRATIO	000	F _{VCO} clock divider
		[2:0]		000 = 1
				001 = 2
				010 = 4
				011 = 8
				1XX = 16
R62 (3Eh)	15:0	FLL_K[15:0]	0000h	Fractional multiply for F _{REF}
FLL Control 3				(MSB = 0.5)
R63 (3Fh)	14:5	FLL_N[9:0]	177h	Integer multiply for F _{REF}
FLL Control 4	10		0.01	(LSB = 1)
R64 (40h)	4:3	FLL_CLK_REF_ DIV [1:0]	00b	FLL Clock Reference Divider
FLL Control 5		514[1.0]		00 = MCLK / 1 01 = MCLK / 2
				10 = MCLK / 2 10 = MCLK / 4
				10 = MCLK / 4 11 = MCLK / 8
				MCLK (or other input reference) must be divided down to <=13.5MHz.
				For lower power operation, the
				reference clock can be divided down further if desired.
	1:0	FLL_CLK_SRC	10b	FLL Clock source
		[1:0]		00 = MCLK
				01 = LRCLK
				10 = BCLK
				11 = Reserved

Table 89 FLL Register Map

FREE-RUNNING FLL CLOCK

The FLL can generate a clock signal even when no external reference is available. However, it should be noted that the accuracy of this clock is reduced, and a reference source should always be used where possible. Note that, in free-running modes, the FLL is not sufficiently accurate for hi-fi ADC or DAC applications. However, the free-running modes are suitable for clocking most other functions, including the Write Sequencer, Charge Pump, DC Servo and Class D loudspeaker driver.

If an accurate reference clock is initially available, then the FLL should be configured as described above. The FLL will continue to generate a stable output clock after the reference input is stopped or disconnected.

If no reference clock is available at the time of starting up the FLL, then an internal clock frequency of approximately 12MHz can be generated by enabling the FLL Analogue Oscillator using the FLL_OSC_ENA register bit, and setting F_{OUT} clock divider to divide by 8 (FLL_OUTDIV = 010b), as defined in Table 89. Under recommended operating conditions, the FLL output may be forced to approximately 12MHz by then enabling the FLL_FRC_NCO bit and setting FLL_FRC_NCO_VAL to 19h (see Table 90). The resultant CLK_SYS, together with the default settings of DCLK_DIV, CLK_DCS_DIV and CLK_256K_DIV, delivers the required clock frequencies for the Class D output driver, DC Servo, Charge Pump and other functions. Note that the value of FLL_FRC_NCO_VAL may be adjusted to control F_{OUT} , but care should be taken to maintain the correct relationship between CLK_SYS and the aforementioned functional blocks.

REGISTER ADDRESS	BIT	LABEL	DEFAULT	DESCRIPTION
R64 (40h) FLL Control 5	12:7	FLL_FRC_NCO_ VAL	00_0000	Forces the oscillator value Valid range is 000000 to 111111 0x19h (011001) = 12MHz approx (Note that this field is required for free-running FLL modes only)
	6	FLL_FRC_NCO	0	FLL control select 0 = controlled by digital loop (default) 1 = controlled by FLL_FRC_NCO_VAL (Note that this field is required for free-running FLL modes only)

Table 90 FLL Free-Running Mode

In both cases described above, the FLL must be selected as the CLK_SYS source by setting SYSCLK_SRC (see Table 80). The free-running FLL modes are not sufficiently accurate for hi-fi ADC or DAC applications. Note that, in the absence of any reference clock, the FLL output is subject to a very wide tolerance. See "Electrical Characteristics" for details of the FLL accuracy.

EXAMPLE FLL CALCULATION

To generate 12.288 MHz output (FOUT) from a 12.000 MHz reference clock (FREF):

- Set FLL_CLK_REF_DIV in order to generate F_{REF} <=13.5MHz: FLL_CLK_REF_DIV = 00 (divide by 1)
- Set FLL_OUTDIV for the required output frequency as shown in Table 87:- $F_{OUT} = 12.288 \text{ MHz}$, therefore FLL_OUTDIV = 2h (divide by 8)
- Set FLL_FRATIO for the given reference frequency as shown in Table 88: $F_{REF} = 12MHz$, therefore FLL_FRATIO = 0h (divide by 1)
- Calculate F_{VCO} as given by $F_{VCO} = F_{OUT} x FLL_OUTDIV:-F_{VCO} = 12.288 x 8 = 98.304MHz$
- Calculate N.K as given by N.K = F_{VCO} / (FLL_FRATIO x F_{REF}): N.K = 98.304 / (1 x 12) = 8.192

•

•

- Determine FLL_N and FLL_K from the integer and fractional portions of N.K:-FLL_N is 8. FLL_K is 0.192
- Confirm that N.K is a fractional quantity and set FLL_FRAC: N.K is fractional. Set FLL_FRAC = 1. Note that, if N.K is an integer, then an alternative value of FLL_FRATIO should be selected in order to produce a fractional value of N.K.

EXAMPLE FLL SETTINGS

Table 91 provides example FLL settings for generating common CLK_SYS frequencies from a variety of low and high frequency reference inputs.

F _{REF}	F _{OUT}	FLL_CLK_ REF_DIV	F _{vco}	FLL_N	FLL_K	FLL_ FRATIO	FLL_ OUTDIV	FLL_ FRAC
32.000	12.288	0h	98.304	384	0	8	8	0
kHz	MHz	(divide by 1)	MHz	(180h)	(0000h)	(3h)	(2h)	
32.000	11.2896	0h	90.3168	352	0.8	8	8	1
kHz	MHz	(divide by 1)	MHz	(160h)	(CCCCh)	(3h)	(2h)	
32.768	12.288	0h	98.304	187	0.5	16	8	1
kHz	MHz	(divide by 1)	MHz	(0BBh)	(8000h)	(4h)	(2h)	
32.768	11.288576	0h	90.308608	344	0.5	8	8	1
kHz	MHz	(divide by 1)	MHz	(158h)	(8000h)	(3h)	(2h)	
32.768	11.2896	0h	90.3168	344	0.53125	8	8	1
kHz	MHz	(divide by 1)	MHz	(158h)	(8800h)	(3h)	(2h)	
48	12.288	0h	98.304	256	0	8	8	0
kHz	MHz	(divide by 1)	MHz	(100h)	(0000h)	(3h)	(2h)	
11.3636	12.368544	0h	98.948354	8	0.707483	1	8	1
MHz	MHz	(divide by 1)	MHz	(008h)	(B51Dh)	(0h)	(2h)	
12.000	12.288	0h	98.3040	8	0.192	1	8	1
MHz	MHz	(divide by 1)	MHz	(008h)	(3127h)	(0h)	(2h)	
12.000	11.289597	0h	90.3168	7	0.526398	1	8	1
MHz	MHz	(divide by 1)	MHz	(007h)	(86C2h)	(0h)	(2h)	
12.288	12.288	0h	98.304	8	0	1	8	0
MHz	MHz	(divide by 1)	MHz	(008h)	(0000h)	(0h)	(2h)	
12.288	11.2896	0h	90.3168	7	0.35	1	8	1
MHz	MHz	(divide by 1)	MHz	(007h)	(599Ah)	(0h)	(2h)	
13.000	12.287990	0h	98.3040	7	0.56184	1	8	1
MHz	MHz	(divide by 1)	MHz	(007h)	(8FD5h)	(0h)	(2h)	
13.000	11.289606	0h	90.3168	6	0.94745	1	8	1
MHz	MHz	(divide by 1)	MHz	(006h)	(F28Ch)	(0h)	(2h)	
19.200	12.287988	1h	98.3039	5	0.119995	1	8	1
MHz	MHz	(divide by 2)	MHz	(005h)	(1EB8h)	(0h)	(2h)	
19.200	11.289588	1h	90.3168	4	0.703995	1	8	1
MHz	MHz	(divide by 2)	MHz	(004h)	(B439h)	(0h)	(2h)	

Table 91 Example FLL Settings

CONTROL INTERFACE

The WM8993 is controlled by writing to registers through a 2-wire serial control interface. Readback is available for all registers, including device ID, power management status and GPIO status.

The WM8993 is a slave device on the control interface; SCLK is a clock input, while SDAT is a bidirectional data pin. To allow arbitration of multiple slaves (and/or multiple masters) on the same interface, the WM8993 transmits logic 1 by tri-stating the SDAT pin, rather than pulling it high. An external pull-up resistor is required to pull the SDAT line high so that the logic 1 can be recognised by the master.

In order to allow many devices to share a single 2-wire control bus, every device on the bus has a unique 7-bit device ID (this is not the same as the 8-bit address of each register in the WM8993). The WM8993 device ID is 0011 0100 (34h). The LSB of the device ID is the Read/Write bit; this bit is set to logic 1 for "Read" and logic 0 for "Write".

The WM8993 operates as a slave device only. The controller indicates the start of data transfer with a high to low transition on SDAT while SCLK remains high. This indicates that a device ID, register address and data will follow. The WM8993 responds to the start condition and shifts in the next eight bits on SDAT (7-bit device ID + Read/Write bit, MSB first). If the device ID received matches the device ID of the WM8993, then the WM8993 responds by pulling SDAT low on the next clock pulse (ACK). If the device ID is not recognised or the R/W bit is set incorrectly, the WM8993 returns to the idle condition and waits for a new start condition and valid address.

If the device ID matches the device ID of the WM8993, the data transfer continues as described below. The controller indicates the end of data transfer with a low to high transition on SDAT while SCKL remains high. After receiving a complete address and data sequence the WM8993 returns to the idle state and waits for another start condition. If a start or stop condition is detected out of sequence at any point during data transfer (i.e. SDAT changes while SCLK is high), the device returns to the idle condition.

The WM8993 supports the following read and write operations:

- Single write
- Single read
- Multiple write using auto-increment
- Multiple read using auto-increment

The sequence of signals associated with a single register write operation is illustrated in Figure 61.

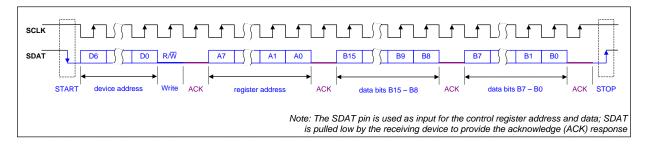


Figure 61 Control Interface Register Write

The sequence of signals associated with a single register read operation is illustrated in Figure 62.

SCLK	
SDAT	T D7 D1 R/W A7 A1 A0 D6 D0 R/W B15 B9 B8 B7 B1 B0 Image: START device ID (Write) ACK register address ACK START device ID (Read) ACK data bits B15 - B8 ACK stop
	Note: The SDA pin is driven by both the master and slave devices in turn to transfer device address, register address, data and ACK responses

Figure 62 Control Interface Register Read

The Control Interface also supports other register operations, as listed above. The interface protocol for these operations is summarised below. The terminology used in the following figures is detailed in Table 92.

Note that multiple write and multiple read operations are supported using the auto-increment mode. This feature enables the host processor to access sequential blocks of the data in the WM8993 register map faster than is possible with single register operations.

TERMINOLOGY	DESCRIPTION					
S	Start Co	ondition				
Sr	Repeat	ed start				
А	Acknowledge (SDAT Low)					
Ā	Not Acknowledge (SDAT High)					
Р	Stop Co	ondition				
R/W	ReadNotWrite	0 = Write				
		1 = Read				
[White field]	Data flow from bus master to WM8993					
[Grey field]	Data flow from WM	8993 to bus master				

Table 92 Control Interface Terminology

	8 bits 8 bits			8 bits 8 bits						
S	Device ID	RW	А	Register Address	A	MSByte Data	А	LSByte Data	А	Р
		(0)								

Figure 63 Single Register Write to Specified Address

Figure 64 Single Register Read from Specified Address

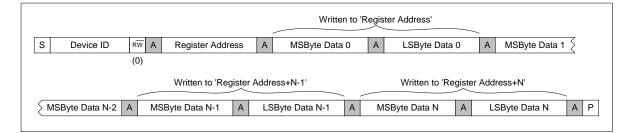


Figure 65 Multiple Register Write to Specified Address using Auto-increment

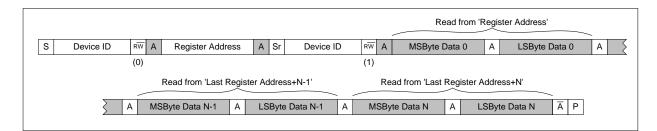


Figure 66 Multiple Register Read from Specified Address using Auto-increment

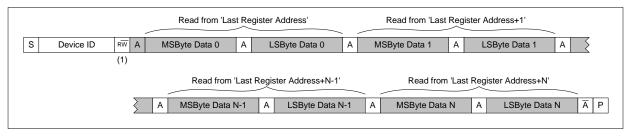


Figure 67 Multiple Register Read from Last Address using Auto-increment

CONTROL WRITE SEQUENCER

The Control Write Sequencer is a programmable unit that forms part of the WM8993 control interface logic. It provides the ability to perform a sequence of register write operations with the minimum of demands on the host processor - the sequence may be initiated by a single operation from the host processor and then left to execute independently.

Default sequences for Start-Up of each output driver and Shut-Down are provided (see "Default Sequences" section). It is recommended that these default sequences are used unless changes become necessary.

When a sequence is initiated, the sequencer performs a series of pre-defined register writes. The host processor informs the sequencer of the start index of the required sequence within the sequencer's memory. At each step of the sequence, the contents of the selected register fields are read from the sequencer's memory and copied into the WM8993 control registers. This continues sequentially through the sequencer's memory until an "End of Sequence" bit is encountered; at this point, the sequencer stops and an Interrupt status flag is asserted. For cases where the timing of the write sequence is important, a programmable delay can be set for specific steps within the sequence.

Note that the Control Write Sequencer's internal clock is derived from the internal clock CLK_SYS which must be enabled by setting CLK_SYS_ENA (see "Clocking and Sample Rates"). The clock division from CLK_SYS is handled transparently by the WM8993 without user intervention, as long as CLK_SYS and sample rates are set correctly.

INITIATING A SEQUENCE

The Register fields associated with running the Control Write Sequencer are described in Table 93. Note that the operation of the Control Write Sequencer also requires the internal clock CLK_SYS to be enabled via the CLK_SYS_ENA (see "Clocking and Sample Rates").

The Write Sequencer is enabled by setting the WSEQ_ENA bit. The start index of the required sequence must be written to the WSEQ_START_INDEX field. Setting the WSEQ_START bit initiates the sequencer at the given start index.

The Write Sequencer can be interrupted by writing a logic 1 to the WSEQ_ABORT bit.

The current status of the Write Sequencer can be read using two further register fields - when the WSEQ_BUSY bit is asserted, this indicates that the Write Sequencer is busy. Note that, whilst the Control Write Sequencer is running a sequence (indicated by the WSEQ_BUSY bit), normal read/write operations to the Control Registers cannot be supported. The index of the current step in the Write Sequencer can be read from the WSEQ_CURRENT_INDEX field; this is an indicator of the sequencer's progress. On completion of a sequence, this field holds the index of the last step within the last commanded sequence.

When the Write Sequencer reaches the end of a sequence, it asserts the WSEQ_EINT flag in Register R121 (see Table 70). This flag can be used to generate an Interrupt Event on completion of the sequence. Note that the WSEQ_EINT flag is asserted to indicate that the WSEQ is NOT Busy.

REGISTER ADDRESS	BIT	LABEL	DEFAULT	DESCRIPTION
R70 (46h) Write Sequencer 0	8	WSEQ_ENA	0	Write Sequencer Enable. 0 = Disabled 1 = Enabled
R73 (49h) Write Sequencer 3	9	WSEQ_ABORT	0	Writing a 1 to this bit aborts the current sequence and returns control of the device back to the serial control interface.
	8	WSEQ_START	0	Writing a 1 to this bit starts the write sequencer at the memory location indicated by the WSEQ_START_INDEX field. The sequence continues until it reaches an "End of sequence" flag. At the end of the sequence, this bit will be reset by the Write Sequencer.

REGISTER ADDRESS	BIT	LABEL	DEFAULT	DESCRIPTION
	5:0	WSEQ_START_ INDEX [5:0]	00_0000	Sequence Start Index. This is the memory location of the first command in the selected sequence. 0 to 31 = RAM addresses 32 to 58 = ROM addresses 59 to 63 = Reserved
R74 (4Ah) Write Sequencer 4	0	WSEQ_BUSY (read only)	0	Sequencer Busy flag (Read Only). 0 = Sequencer idle 1 = Sequencer busy Note: it is not possible to write to control registers via the control interface while the Sequencer is Busy.
R75 (4Bh) Write Sequencer 5	5:0	WSEQ_CURRE NT_INDEX [5:0] (read only)	00_0000	Sequence Current Index. This is the location of the most recently accessed command in the write sequencer memory.

Table 93 Write Sequencer Control - Initiating a Sequence

PROGRAMMING A SEQUENCE

A sequence consists of write operations to data bits (or groups of bits) within the control registers. The Register fields associated with programming the Control Write Sequencer are described in Table 94.

For each step of the sequence being programmed, the Sequencer Index must be written to the WSEQ_WRITE_INDEX field. The values 0 to 31 correspond to all the available RAM addresses within the Write Sequencer memory. (Note that memory addresses 32 to 58 also exist, but these are ROM addresses, which are not programmable.)

Having set the Index as described above, Register R71 must be written to (containing the Control Register Address, the Start Bit Position and the Field Width applicable to this step of the sequence). Also, Register R72 must be written to (containing the Register Data, the End of Sequence flag and the Delay time required after this step is executed). After writing to these two registers, the next step in the sequence may be programmed by updating WSEQ_WRITE_INDEX and repeating the procedure.

WSEQ_ADDR is an 8-bit field containing the Control Register Address in which the data should be written.

WSEQ_DATA_START is a 4-bit field which identifies the LSB position within the selected Control Register to which the data should be written. Setting WSEQ_DATA_START = 0100 will cause 1-bit data to be written to bit 4. With this setting, 4-bit data would be written to bits 7:4 and so on.

WSEQ_DATA_WIDTH is a 3-bit field which identifies the width of the data block to be written. This enables selected portions of a Control Register to be updated without any concern for other bits within the same register, eliminating the need for read-modify-write procedures. Values of 0 to 7 correspond to data widths of 1 to 8 respectively. For example, setting WSEQ_DATA_WIDTH = 010 will cause a 3-bit data block to be written. Note that the maximum value of this field corresponds to an 8-bit data block; writing to register fields greater than 8 bits wide must be performed using two separate operations of the Control Write Sequencer.

WSEQ_DATA is an 8-bit field which contains the data to be written to the selected Control Register. The WSEQ_DATA_WIDTH field determines how many of these bits are written to the selected register; the most significant bits (above the number indicated by WSEQ_DATA_WIDTH) are ignored.

WSEQ_DELAY is a 4-bit field which controls the waiting time between the current step and the next step in the sequence i.e. the delay occurs after the write in which it was called. The total delay time per step (including execution) is given by:

 $T = k \times (2^{WSEQ_DELAY} + 8)$

where $k = 62.5 \mu s$ (under recommended operating conditions)

This gives a useful range of execution/delay times from 562µs up to 2.048s per step.

WSEQ_EOS is a 1-bit field which indicates the End of Sequence. If this bit is set, then the Control Write Sequencer will automatically stop after this step has been executed.

REGISTER ADDRESS	BIT	LABEL	DEFAULT	DESCRIPTION
R70 (46h) Write Sequencer 0	4:0	WSEQ_WRIT E_INDEX [4:0]	0_000	Sequence Write Index. This is the memory location to which any updates to R71 and R72 will be copied.
R71 (47h) Write Sequencer 1	14:12	WSEQ_DATA _WIDTH [2:0]	000	0 to 31 = RAM addresses Width of the data block written in this sequence step. 000 = 1 bit 001 = 2 bits 010 = 3 bits 011 = 4 bits 100 = 5 bits 101 = 6 bits 110 = 7 bits 111 = 8 bits
	11:8	WSEQ_DATA _START [3:0]	0000	Bit position of the LSB of the data block written in this sequence step. 0000 = Bit 0 1111 = Bit 15
	7:0	WSEQ_ADDR [7:0]	0000_0000	Control Register Address to be written to in this sequence step.
R72 (48h) Write Sequencer 2	14	WSEQ_EOS	0	End of Sequence flag. This bit indicates whether the Control Write Sequencer should stop after executing this step. 0 = Not end of sequence 1 = End of sequence (Stop the sequencer after this step).
	11:8	WSEQ_DELA Y [3:0]	0000	Time delay after executing this step. Total time per step (including execution) = $62.5\mu s \times (2^{WSEQ_DELAY} + 8)$
	7:0	WSEQ_DATA [7:0]	0000_0000	Data to be written in this sequence step. When the data width is less than 8 bits, then one or more of the MSBs of WSEQ_DATA are ignored. It is recommended that unused bits be set to 0.

Note that a 'Dummy' write can be inserted into a control sequence by commanding the sequencer to write a value of 0 to bit 0 of Register R255 (FFh). This is effectively a write to a non-existent register location. This can be used in order to create placeholders ready for easy adaptation of the sequence. For example, a sequence could be defined to power-up a mono signal path from DACL to headphone, with a 'dummy' write included to leave space for easy modification to a stereo signal path configuration. Dummy writes can also be used in order to implement additional time delays between register writes. Dummy writes are included in both of the Headphone start-up sequences - see Table 95 and Table 96.

In summary, the Control Register to be written is set by the WSEQ_ADDR field. The data bits that are written are determined by a combination of WSEQ_DATA_START, WSEQ_DATA_WIDTH and WSEQ_DATA. This is illustrated below for an example case of writing to the ADCL_DAC_SVOL field within Register R13 (0Dh).

In this example, the Start Position is bit 09 (WSEQ_DATA_START = 1001b) and the Data width is 4 bits (WSEQ_DATA_WIDTH = 0011b). With these settings, the Control Write Sequencer would update the Control Register R13 [12:9] with the contents of WSEQ_DATA [3:0].

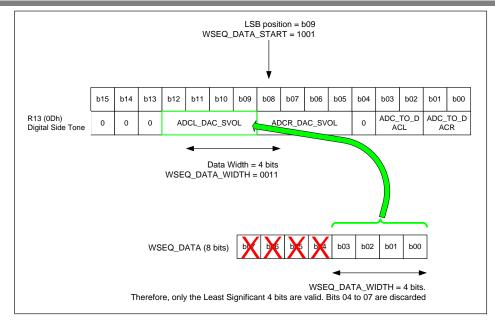


Figure 68 Control Write Sequencer Example

DEFAULT SEQUENCES

When the WM8993 is powered up, a number of Control Write Sequences are available through default settings in both RAM and ROM memory locations. The pre-programmed default settings include Start-Up and Shut-Down sequences for each of the output drivers. Note that the default sequences do not include audio signal path or gain setting configuration; this must be implemented prior to scheduling any of the default Start-Up sequences.

Index addresses 0 to 31 may be programmed to users' own settings at any time, as described in "Programming a Sequence". Users' own settings remain in memory regardless of WSEQ_ENA, and are not affected by software resets (i.e. writing to Register R0). However, any non-default sequences are lost when the device is powered down.

The following default control sequences are provided:

- 1. Headphone Cold Start-Up This sequence powers up the headphone driver and charge pump. It commands the DC Servo to perform offset correction. It enables the master bias required for analogue functions. This sequence is intended for enabling the headphone output after initial power-on, when DC offset correction has not previously been run.
- 2. Headphone Warm Start-Up This sequence is similar to the Headphone Cold Start-Up, but does not include the DC Servo operation. This sequence is intended for fast enabling of the headphone output when DC offset correction has previously been scheduled and provided the analogue gain settings have not been updated since scheduling the DC offset correction.
- 3. Speaker Start-Up This sequence powers up the stereo speaker driver. It also enables the master bias required for analogue functions.
- 4. Earpiece Start-Up This sequence powers up the earpiece driver. It also enables the master bias required for analogue functions. The soft-start VMID option is used in order to suppress pops when the driver is enabled. This sequence is intended for enabling the earpiece driver when the master bias has not previously been enabled.
- 5. Line Output Start-Up This sequence powers up the line outputs. Active discharge of the line outputs is selected, followed by the soft-start VMID enable, followed by selection of the master bias and un-muting of the line outputs. This sequence is intended for enabling the line drivers when the master bias has not previously been enabled.
- 6. Speaker and Headphone Fast Shut-Down This sequence implements a fast shutdown of the speaker and headphone drivers. It also disables the DC Servo and charge pump circuits, and

disables the analogue bias circuits using the soft-start (ramp) feature. This sequence is intended as a shut-down sequence when only the speaker or headphone drivers are enabled.

7. Generic Shut-Down - This sequence shuts down all of the WM8993 output drivers, DC Servo, charge pump and analogue bias circuits. It is similar to the Fast Shut-Down sequence, with the additional control of the earpiece and line output drivers. Active discharge of the line outputs is included and all drivers are disabled as part of this sequence.

Specific details of each of these sequences is provided below.

Headphone Cold Start-Up

The Headphone Cold Start-Up sequence is initiated by writing 0100h to Register 73 (49h). This single operation starts the Control Write Sequencer at Index Address 0 (00h) and executes the sequence defined in Table 95.

WSEQ INDEX	REGISTER ADDRESS	WIDTH	START	DATA	DELAY	EOS	DESCRIPTION
0 (00h)	R57 (39h)	5 bits	Bit 2	1Bh	0h	0b	STARTUP_BIAS_ENA = 1
							VMID_BUF_ENA = 1
							VMID_RAMP[1:0] = 11b
							(delay = 0.5625ms)
1 (01h)	R1 (01h)	3 bits	Bit 0	03h	9h	0b	BIAS_ENA = 1
							VMID_SEL[1:0] = 01b
							(delay = 32.5ms)
2 (02h)	R76 (4Ch)	1 bits	Bit 15	01h	6h	0b	CP_ENA = 1
							(delay = 4.5ms)
3 (03h)	R1 (01h)	3 bits	Bit 7	07h	0h	0b	HPOUT1R_ENA = 1
							HPOUT1L_ENA = 1
							(delay = 0.5625ms)
4 (04h)	R96 (60h)	5 bits	Bit 1	11h	0h	0b	HPOUT1R_DLY = 1
							HPOUT1L_DLY = 1
							(delay = 0.5625ms)
5 (05h)	R84 (54h)	6 bits	Bit 0	33h	Ch	0b	DCS_ENA_CHAN_0 = 1
							DCS_ENA_CHAN_1 = 1
							DCS_TRIG_STARTUP_0 = 1
							DCS_TRIG_STARTUP_1 = 1
							(delay = 256.5ms)
6 (06h)	R255 (FFh)	1 bits	Bit 0	00h	0h	0b	Dummy Write for expansion
							(delay = 0.5625ms)
7 (07h)	R96 (60h)	6 bits	Bit 2	3Bh	0h	1b	HPOUT1R_OUTP = 1
							HPOUT1R_RMV_SHORT =1
							HPOUT1_DLY = 1
							HPOUT1L_OUTP = 1
							HPOUT1L_RMV_SHORT = 1
							(delay = 0.5625ms)

This sequence takes approximately 296ms to run.

Table 95 Headphone Cold Start-Up Default Sequence

Headphone Warm Start-Up

The Headphone Warm Start-Up sequence can be initiated by writing 0108h to Register 73 (49h). This single operation starts the Control Write Sequencer at Index Address 8 (08h) and executes the sequence defined in Table 96.

WSEQ INDEX	REGISTER ADDRESS	WIDTH	START	DATA	DELAY	EOS	DESCRIPTION
8 (08h)	R57 (39h)	5 bits	Bit 2	1Bh	0h	0b	STARTUP_BIAS_ENA = 1
							VMID_BUF_ENA = 1
							VMID_RAMP[1:0] = 11b
							(delay = 0.5625ms)
9 (09h)	R1 (01h)	3 bits	Bit 0	03h	9h	0b	BIAS_ENA = 1
							VMID_SEL[1:0] = 01b
							(delay = 32.5ms)
10 (0Ah)	R76 (4Ch)	1 bits	Bit 15	01h	6h	0b	CP_ENA = 1
							(delay = 4.5ms)
11 (0Bh)	R1 (01h)	3 bits	Bit 7	07h	0h	0b	HPOUT1R_ENA = 1
							HPOUT1L_ENA = 1
							(delay = 0.5625ms)
12 (0Ch)	R96 (60h)	5 bits	Bit 1	11h	0h	0b	HPOUT1R_DLY = 1
							HPOUT1L_DLY = 1
							(delay = 0.5625ms)
13 (0Dh)	R84 (54h)	2 bits	Bit 0	03h	0h	0b	DCS_ENA_CHAN_0 = 1
							DCS_ENA_CHAN_1 = 1
							(delay = 0.5625ms)
14 (0Eh)	R255 (FFh)	1 bits	Bit 0	00h	0h	0b	Dummy Write for expansion
							(delay = 0.5625ms)
15 (0Fh)	R96 (60h)	6 bits	Bit 2	3Bh	0h	1b	HPOUT1R_OUTP = 1
							HPOUT1R_RMV_SHORT =1
							HPOUT1_DLY = 1
							HPOUT1L_OUTP = 1
							HPOUT1L_RMV_SHORT = 1
							(delay = 0.5625ms)

This sequence takes approximately 40ms to run.

 Table 96 Headphone Warm Start-Up Default Sequence

Speaker Start-Up

The Speaker Start-Up sequence can be initiated by writing 0110h to Register 73 (49h). This single operation starts the Control Write Sequencer at Index Address 16 (10h) and executes the sequence defined in Table 97.

WSEQ INDEX	REGISTER ADDRESS	WIDTH	START	DATA	DELAY	EOS	DESCRIPTION
16 (10h)	R57 (39h)	5 bits	Bit 2	1Bh	0h	0b	STARTUP_BIAS_ENA = 1 VMID_BUF_ENA = 1 VMID_RAMP[1:0] = 11b (delay = 0.5625ms)
17 (11h)	R1 (01h)	3 bits	Bit 0	03h	9h	0b	BIAS_ENA = 1 VMID_SEL[1:0] = 01b (delay = 32.5ms)
18 (12h)	R1 (01h)	2 bits	Bit 12	03h	0h	1b	SPKOUTL_ENA = 1 SPKOUTR_ENE = 1 (delay = 0.5625ms)

This sequence takes approximately 34ms to run.

Table 97 Speaker Start-Up Default Sequence

Earpiece Start-Up

The Earpiece Start-Up sequence can be initiated by writing 0113h to Register 73 (49h). This single operation starts the Control Write Sequencer at Index Address 19 (13h) and executes the sequence defined in Table 98.

This sequence takes approximately 259ms to run
--

WSEQ INDEX	REGISTER ADDRESS	WIDTH	START	DATA	DELAY	EOS	DESCRIPTION
19 (13h)	R57 (39h)	6 bits	Bit 1	27h	0h	0b	BIAS_SRC = 1
							STARTUP_BIAS_ENA = 1
							VMID_BUF_ENA = 1
							VMID_RAMP[1:0] = 10b
							(delay = 0.5625ms)
20 (14h)	R56 (38h)	1 bit	Bit 6	01h	0h	0b	HPOUT2_IN_ENA = 1
							(delay = 0.5625ms)
21 (15h)	R1 (01h)	1 bit	Bit 11	01h	0h	0b	HPOUT2_ENA = 1
							(delay = 0.5625ms)
22 (16h)	R1 (01h)	3 bits	Bit 0	03h	Ch	0b	BIAS_ENA = 1
							VMID_SEL[1:0] = 01b
							(delay = 256.5ms)
23 (17h)	R57 (39h)	1 bit	Bit 1	00h	0h	0b	BIAS_SRC = 0
							(delay = 0.5625ms)
24 (18h)	R31 (1Fh)	1 bit	Bit 5	00h	0h	1b	HPOUT2_MUTE = 0
							(delay = 0.5625ms)

Table 98 Earpiece Start-Up Default Sequence

Line Output Start-Up

The Line Output Start-Up sequence can be initiated by writing 0119h to Register 73 (49h). This single operation starts the Control Write Sequencer at Index Address 25 (19h) and executes the sequence defined in Table 99.

WSEQ INDEX	REGISTER ADDRESS	WIDTH	START	DATA	DELAY	EOS	DESCRIPTION
25 (19h)	R56 (38h)	2 bits	Bit 4	03h	0h	0b	LINEOUT2_DISCH = 1
							LINEOUT1_DISCH = 1
							(delay = 0.5625ms)
26 (1Ah)	R57 (39h)	6 bits	Bit 1	27h	0h	0b	BIAS_SRC = 1
							STARTUP_BIAS_ENA = 1
							VMID_BUF_ENA = 1
							VMID_RAMP[1:0] = 10b
							(delay = 0.5625ms)
27 (1Bh)	R56 (38h)	1 bit	Bit 7	01h	0h	0b	LINEOUT_VMID_BUF_ENA = 1
							(delay = 0.5625ms)
28 (1Ch)	R3 (03h)	4 bits	Bit 10	0Fh	0h	0b	LINEOUT2P_ENA = 1
							LINEOUT2N_ENA = 1
							LINEOUT1P_ENA = 1
							LINEOUT1N_ENA = 1
							(delay = 0.5625ms)
29 (1Dh)	R56 (38h)	2 bits	Bit 4	00h	0h	0b	LINEOUT2_DISCH = 0
							LINEOUT1_DISCH = 0
							(delay = 0.5625ms)
30 (1Eh)	R1 (01h)	3 bits	Bit 0	03h	Dh	0b	BIAS_ENA = 1
							VMID_SEL = 01b
							(delay = 0.5625ms)
31 (1Fh)	R57 (39h)	1 bit	Bit 1	00h	0h	0b	BIAS_SRC = 0
							(delay = 512.5ms)
32 (20h)	R30 (1Eh)	2 bits	Bit 5	00h	0h	0b	LINEOUT1P_MUTE = 0
							LINEOUT1N_MUTE = 0
							(delay = 0.5625ms)
33 (21h)	R30 (1Eh)	2 bits	Bit 1	00h	0h	1b	LINEOUT2P_MUTE = 0
							LINEOUT2N_MUTE = 0
							(delay = 0.5625ms)

This sequence takes approximately 517ms to run.

Table 99 Line Output Start-Up Default Sequence

Speaker and Headphone Fast Shut-Down

The Speaker and Headphone Fast Shut-Down sequence can be initiated by writing 0122h to Register 73 (49h). This single operation starts the Control Write Sequencer at Index Address 34 (22h) and executes the sequence defined in Table 100.

This sequence takes approximately 37ms to run.
--

WSEQ INDEX	REGISTER ADDRESS	WIDTH	START	DATA	DELAY	EOS	DESCRIPTION
34 (22h)	R96 (60h)	7 bits	Bit 1	00h	0h	0b	HPOUT1R_DLY = 0
							HPOUT1R_OUTP = 0
							HPOUT1R_RMV_SHORT = 0
							HPOUT1L_DLY = 0
							$HPOUT1L_OUTP = 0$
							HPOUT1L_RMV_SHORT = 0
							(delay = 0.5625ms)
35 (23h)	R84 (54h)	2 bits	Bit 0	00h	0h	0b	DCS_ENA_CHAN_0 = 0
							DCS_ENA_CHAN_1 = 0
							(delay = 0.5625ms)
36 (24h)	R1 (01h)	2 bits	Bit 8	00h	0h	0b	HPOUT1R_ENA = 0
							HPOUT1L_ENA = 0
							(delay = 0.5625ms)
37 (25h)	R76 (4Ch)	1 bit	Bit 15	00h	0h	0b	CP_ENA = 0
							(delay = 0.5625ms)
38 (26h)	R1 (01h)	2 bits	Bit 12	00h	0h	0b	SPKOUTL_ENA = 0
							SPKOUTR_ENA = 0
							(delay = 0.5625ms)
39 (27h)	R57 (39h)	6 bits	Bit 1	37h	0h	0b	BIAS_SRC = 1
							STARTUP_BIAS_ENA = 1
							VMID_BUF_ENA = 1
							VMID_RAMP[1:0] = 11b
							(delay = 0.5625ms)
40 (28h)	R1 (01h)	3 bits	Bit 0	00h	9h	0b	BIAS_ENA = 0
							VMID_SEL = 00b
							(delay = 32.5ms)
41 (29h)	R57 (39h)	6 bits	Bit 1	00h	0h	1b	BIAS_SRC = 0
							STARTUP_BIAS_ENA = 0
							VMID_BUF_ENA = 0
							VMID_RAMP[1:0] = 00b
							(delay = 0.5625ms)

Table 100 Speaker and Headphone Fast Shut-Down Default Sequence

Generic Shut-Down

The Generic Shut-Down sequence can be initiated by writing 012Ah to Register 73 (49h). This single operation starts the Control Write Sequencer at Index Address 42 (2Ah) and executes the sequence defined in Table 101.

This sequence ta	kes approximately	522ms to run.

WSEQ INDEX	REGISTER ADDRESS	WIDTH	START	DATA	DELAY	EOS	DESCRIPTION
42 (2Ah)	R31 (1Fh)	1 bit	Bit 5	01h	0h	0b	HPOUT2_MUTE = 1
							(delay = 0.5625ms)
43 (2Bh)	R30 (1Eh)	6 bits	Bit 1	33h	0h	0b	LINEOUT2P_MUTE = 1
							LINEOUT2N_MUTE = 1
							LINEOUT1P_MUTE = 1
							LINEOUT1N_MUTE = 1
							(delay = 0.5625ms)
44 (2Ch)	R96 (60h)	7 bits	Bit 1	00h	0h	0b	HPOUT1R_DLY = 0
							$HPOUT1R_OUTP = 0$
							HPOUT1R_RMV_SHORT = 0
							HPOUT1L_DLY = 0
							$HPOUT1L_OUTP = 0$
							$HPOUT1L_RMV_SHORT = 0$
							(delay = 0.5625ms)
45 (2Dh)	R84 (54h)	2 bits	Bit 0	00h	0h	0b	DCS_ENA_CHAN_0 = 0
- ()	- (- /				-		$DCS_ENA_CHAN_1 = 0$
							(delay = 0.5625ms)
46 (2Eh)	R1 (01h)	2 bits	Bit 8	00h	0h	0b	HPOUT1R_ENA = 0
10 (2211)		2 0110	Diro	0011	011	0.0	$HPOUT1L_ENA = 0$
							(delay = 0.5625ms)
47 (2Fh)	R76 (4Ch)	1 bit	Bit 15	00h	0h	0b	CP ENA = 0
τη (Σ ΓΠ)		1 51	Dit 10	0011	011	00	(delay = 0.5625ms)
48 (30h)	R1 (01h)	2 bits	Bit 12	00h	0h	0b	SPKOUTL_ENA = 0
40 (3011)		2 5113	Dit 12	0011	011	00	SPKOUTR_ENA = 0
							(delay = 0.5625ms)
49 (31h)	R57 (39h)	6 bits	Bit 1	17h	0h	0b	BIAS SRC = 1
40 (0 m)	107 (001)	0 5113	Dit i	1711	011	00	STARTUP_BIAS_ENA = 1
							VMID_BUF_ENA = 1
							VMID_RAMP[1:0] = 01b
50 (32h)	R1 (01h)	3 bits	Bit 0	00h	Dh	0b	(delay = 0.5625ms) BIAS_ENA = 0
50 (5211)		3 DIIS	DILU	0011	DII	00	
							VMID_SEL = 00b
54 (00h)	D4 (041)	4.6.9	Dir 44	0.01	01	01	(delay = 512.5ms)
51 (33h)	R1 (01h)	1 bit	Bit 11	00h	0h	0b	$HPOUT2_ENA = 0$
							(delay = 0.5625ms)
52 (34h)	R56 (38h)	2 bits	Bit 4	03h	0h	0b	LINEOUT2_DISCH = 1
							LINEOUT1_DISCH = 1
((delay = 0.5625ms)
53 (35h)	R55 (37h)	1 bit	Bit 0	01h	0h	0b	VROI = 1
				ļ			(delay = 0.5625ms)
54 (36h)	R56 (38h)	1 bit	Bit 6	00h	0h	0b	HPOUT2_IN_ENA =0
							(delay = 0.5625ms)

WSEQ INDEX	REGISTER ADDRESS	WIDTH	START	DATA	DELAY	EOS	DESCRIPTION
55 (37h)	R3 (03h)	4 bits	Bit 10	00h	0h	0b	LINEOUT2P_ENA = 0
							$LINEOUT2N_ENA = 0$
							LINEOUT1P_ENA = 0
							LINEOUT1N_ENA = 0
							(delay = 0.5625ms)
56 (38h)	R56 (38h)	1 bit	Bit 7	00h	0h	0b	LINEOUT_VMID_BUF_ENA = 0
							(delay = 0.5625ms)
57 (39h)	R55 (37h)	1 bit	Bit 0	00h	0h	0b	VROI = 0
							(delay = 0.5625ms)
58 (3Ah)	R57 (39h)	6 bits	Bit 1	00h	0h	1b	BIAS_SRC = 0
							STARTUP_BIAS_ENA = 0
							$VMID_BUF_ENA = 0$
							VMID_RAMP[1:0] = 00b
							(delay = 0.5625ms)

 Table 101 Generic Shut-Down Default Sequence

POP SUPPRESSION CONTROL

The WM8993 incorporates a number of features, including SilentSwitch[™] technology, designed to suppress pops normally associated with Start-Up, Shut-Down or signal path control. To achieve maximum benefit from these features, careful attention is required to the sequence and timing of these controls. Note that, under the recommended usage conditions of the WM8993, these features will be configured by running the default Start-Up and Shut-Down sequences as described in the "Control Write Sequencer" section. In these cases, the user does not need to set these register fields directly.

The Pop Suppression controls relating to the Headphone / Line Output drivers are described in the "Output Signal Path" section.

Additional bias controls, also pre-programmed into Control Write Sequencer, are described in the "Reference Voltages and Master Bias" section.

DISABLED LINE OUTPUT CONTROL

The line outputs are biased to VMID in normal operation. In order to avoid audible pops caused by a disabled signal path dropping to AGND, the WM8993 can maintain these connections at VMID when the relevant output stage is disabled. This is achieved by connecting a buffered VMID reference to the output. The buffered VMID reference is enabled by setting VMID_BUF_ENA. The output resistance can be either 1000 Ω or 20k Ω , depending on the VROI register bit.

REGISTER ADDRESS	BIT	LABEL	DEFAULT	DESCRIPTION
R55 (37h) Additional	0	VROI	0	Buffered VMID to Analogue Line Output Resistance (Disabled Outputs)
Control				$0 = 20 k\Omega$ from buffered VMID to output
				$1 = 1000\Omega$ from buffered VMID to output
R57 (39h)	3	VMID_BUF_ENA	0	VMID Buffer Enable
AntiPOP2				0 = Disabled
				1 = Enabled

Table 102 Disabled Line Output Control

LINE OUTPUT DISCHARGE CONTROL

The line output paths can be actively discharged to AGND through internal resistors if desired. This is desirable at start-up in order to achieve a known output stage condition prior to enabling the soft-start VMID reference voltage. This is also desirable in shut-down to prevent the external connections from being affected by the internal circuits. The line outputs LINEOUT1P and LINEOUT1N are discharged to AGND by setting LINEOUT1_DISCH. The line outputs LINEOUT2P and LINEOUT2N are discharged to AGND by setting LINEOUT2_DISCH.

REGISTER ADDRESS	BIT	LABEL	DEFAULT	DESCRIPTION
R56 (38h) AntiPOP1	5	LINEOUT1_DISC H	0	Discharges LINEOUT1P and LINEOUT1N outputs via approx $4k\Omega$ resistor
				0 = Not active
				1 = Actively discharging LINEOUT1P and LINEOUT1N
	4	LINEOUT2_DISC H	0	Discharges LINEOUT2P and LINEOUT2N outputs via approx $4k\Omega$ resistor
				0 = Not active
				1 = Actively discharging LINEOUT2P and LINEOUT2N

Table 103 Line Output Discharge Control

VMID REFERENCE DISCHARGE CONTROL

The VMID reference can be actively discharged to AGND through internal resistors. This is desirable at start-up in order to achieve a known initial condition prior to enabling the soft-start VMID reference; this ensures maximum suppression of audible pops associated with start-up. VMID is discharged by setting VMID_DISCH.

	EGISTER DDRESS	BIT	LABEL	DEFAULT	DESCRIPTION
R5	7 (39h)	0	VMID_DISCH	0	Connects VMID to ground
Ant	iPOP2				0 = Disabled
					1 = Enabled

Table 104 VMID Reference Discharge Control

INPUT VMID CLAMPS

The analogue inputs can be clamped to Vmid using the INPUTS_CLAMP bit described below. This allows pre-charging of the input AC coupling capacitors during power-up, avoiding long delays when using headphone bypass paths. Note that all eight inputs are clamped using the same control bit.

REGISTER ADDRESS	BIT	LABEL	DEFAULT	DESCRIPTION
R21 (15h) Input Clamps	6	INPUTS_CLAMP		Input pad VMID clamp 0 = Clamp de-activated
				1 = Clamp activated

Table 105 Input VMID Clamps

REFERENCE VOLTAGES AND MASTER BIAS

This section describes the analogue reference voltage and bias current controls. It also describes the VMID soft-start circuit for pop suppressed start-up and shut-down. Note that, under the recommended usage conditions of the WM8993, these features will be configured by running the default Start-Up and Shut-Down sequences as described in the "Control Write Sequencer" section. In these cases, the user does not need to set these register fields directly.

The analogue circuits in the WM8993 require a mid-rail analogue reference voltage, VMID. This reference is generated from AVDD1 via a programmable resistor chain. Together with the external VMID decoupling capacitor, the programmable resistor chain determines the charging characteristic on VMID. This is controlled by VMID_SEL[1:0], and can be used to optimise the reference for normal operation or low power standby as described in Table 106.

The analogue circuits in the WM8993 require a bias current. The normal bias current is enabled by setting BIAS_ENA. Note that the normal bias current source requires VMID to be enabled also.

REGISTER ADDRESS	BIT	LABEL	DEFAULT	DESCRIPTION
R1 (01h) Power Management (1)	2:1	VMID_SEL [1:0]	00	VMID Divider Enable and Select 00 = VMID disabled (for OFF mode) $01 = 2 \times 40 k\Omega$ divider (for normal operation) $10 = 2 \times 240 k\Omega$ divider (for low power standby) 11 = Reserved
	0	BIAS_ENA	0	Enables the Normal bias current generator (for all analogue functions) 0 = Disabled 1 = Enabled

 Table 106
 Reference Voltages and Master Bias Enable

A pop-suppressed start-up requires VMID to be enabled smoothly, without the step change normally associated with the initial stage of the VMID capacitor charging. A pop-suppressed start-up also requires the analogue bias current to be enabled throughout the signal path prior to the VMID reference voltage being applied. The WM8993 incorporates pop-suppression circuits which address these requirements.

An alternate bias current source (Start-Up Bias) is provided for pop-free start-up; this is enabled by the STARTUP_BIAS_ENA register bit. The start-up bias is selected (in place of the normal bias) using the BIAS_SRC bit. It is recommended that the start-up bias is used during start-up, before switching back to the higher quality, normal bias.

A soft-start circuit is provided in order to control the switch-on of the VMID reference. The soft-start control circuit offers two slew rates for enabling the VMID reference; these are selected and enabled by VMID_RAMP. When the soft-start circuit is enabled prior to enabling VMID_SEL, the reference voltage rises smoothly, without the step change that would otherwise occur. It is recommended that the soft-start circuit and the output signal path be enabled before VMID is enabled by VMID_SEL.

A soft shut-down is provided, using the soft-start control circuit and the start-up bias current generator. The soft shut-down of VMID is achieved by setting VMID_RAMP, STARTUP_BIAS_ENA and BIAS_SRC to select the start-up bias current and soft-start circuit prior to setting VMID_SEL=00.

Note that, if the VMID_RAMP function is enabled for soft start-up or soft shut-down then, after setting VMID_SEL = 00 to disable VMID, the soft-start circuit must be reset before re-enabling VMID. The soft-start circuit is reset by setting VMID_RAMP = 00. After resetting the soft-start circuit, the VMID_RAMP register may be updated to the required setting for the next VMID transition.

The VMID soft-start register controls are defined in Table 107.

REGISTER ADDRESS	BIT	LABEL	DEFAULT	DESCRIPTION
R57 (39h) AntiPOP2	6:5	VMID_RAMP [1:0]	10	VMID soft start enable / slew rate control
				00 = Normal / Slow start
				01 = Normal / Fast start
				10 = Soft / Slow start
				11 = Soft / Fast start
				If VMID_RAMP = 1X is selected for VMID start-up or shut-down, then the soft-start circuit must be reset by setting VMID_RAMP=00 after VMID is disabled, before VMID is re-enabled. VMID is disabled / enabled using the VMID_SEL register.
	2	STARTUP_BIAS_ ENA	0	Enables the Start-Up bias current generator
				0 = Disabled
				1 = Enabled
	1	BIAS_SRC	1	Selects the bias current source
				0 = Normal bias
				1 = Start-Up bias

Table 107 Soft Start Control

POWER MANAGEMENT

The WM8993 has four control registers that allow users to select which functions are active. For minimum power consumption, unused functions should be disabled. To minimise pop or click noise, it is important to enable or disable functions in the correct order. See "Control Write Sequencer" for further details of recommended control sequences.

REGISTER ADDRESS	BIT	LABEL	DEFAULT	DESCRIPTION				
R1 (1h) Power	13	SPKOUTR_ENA	0B	SPKMIXR Mixer, SPKRVOL PGA and SPKOUTR Output Enable				
Management				0 = Disabled				
(1)				1 = Enabled				
	12	SPKOUTL_ENA	0b	SPKMIXL Mixer, SPKLVOL PGA and SPKOUTL Output Enable				
				0 = Disabled				
				1 = Enabled				
	11	HPOUT2_ENA	0b	HPOUT2 and HPOUT2MIX Enable				
				0 = Disabled				
				1 = Enabled				
	9	HPOUT1L_ENA	0b	Enables HPOUT1L input stage				
				0 = Disabled				
				1 = Enabled				
				For normal operation, this bit should be set as the first step of the HPOUT1L Enable sequence.				
				Note: When HPOUT1_AUTO_PU is set, the HPOUT1L_ENA bit automatically enables all stages of the left headphone driver				

REGISTER ADDRESS	BIT	LABEL	DEFAULT	DESCRIPTION				
	8	HPOUT1R_ENA	Ob	Enables HPOUT1R input stage 0 = Disabled 1 = Enabled For normal operation, this bit should be set as the first step of the HPOUT1R Enable sequence. Note: When HPOUT1_AUTO_PU is set, the HPOUT1R_ENA bit automatically enables all stages of the right headphone driver				
	5	MICB2_ENA	Ob	Microphone Bias 2 Enable 0 = OFF (high impedance output) 1 = ON				
	4	MICB1_ENA	Ob	Microphone Bias 1 Enable 0 = OFF (high impedance output) 1 = ON				
	2:1	VMID_SEL [1:0]	00b	VMID Divider Enable and Select 00 = VMID disabled (for OFF mode) $01 = 2 \times 40 k\Omega$ divider (Normal mode) $10 = 2 \times 240 k\Omega$ divider (Standby mode) 11 = Reserved				
	0	BIAS_ENA	Ob	Enables the Normal bias current generator (for all analogue functions) 0 = Disabled 1 = Enabled				
R2 (02h) Power Management	14	TSHUT_ENA	0b	Thermal Sensor Enable 0 = Disabled 1 = Enabled				
(2)	13	TSHUT_OPDIS	1b	Thermal Shutdown Control (Causes audio outputs to be disabled if an over-temperature occurs. The thermal sensor must also be enabled.) 0 = Disabled 1 = Enabled				
	11	OPCLK_ENA	0b	GPIO Clock Output Enable 0 = Disabled 1 = Enabled				
	9	MIXINL_ENA	Ob	Left Input Mixer Enable (Enables MIXINL and RXVOICE input to MIXINL) 0 = Disabled 1 = Enabled				
	8	MIXINR_ENA	Ob	Right Input Mixer Enable (Enables MIXINR and RXVOICE input to MIXINR) 0 = Disabled 1 = Enabled				
	7	IN2L_ENA	Ob	IN2L Input PGA Enable 0 = Disabled 1 = Enabled				
	6	IN1L_ENA	Ob	IN1L Input PGA Enable 0 = Disabled 1 = Enabled				

REGISTER ADDRESS	BIT	LABEL	DEFAULT	DESCRIPTION				
	5	IN2R_ENA	0b	IN2R Input PGA Enable				
				0 = Disabled				
				1 = Enabled				
	4	IN1R_ENA	0b	IN1R Input PGA Enable				
				0 = Disabled				
				1 = Enabled				
	1	ADCL_ENA	0b	Left ADC Enable				
				0 = ADC disabled				
	-			1 = ADC enabled				
	0	ADCR_ENA	0b	Right ADC Enable				
				0 = ADC disabled				
				1 = ADC enabled				
R3 (03h) Power	13	LINEOUT1N_ENA	0b	LINEOUT1N Line Out and LINEOUT1NMIX Enable				
Management				0 = Disabled				
(3)	-			1 = Enabled				
	12	LINEOUT1P_ENA	0b	LINEOUT1P Line Out and LINEOUT1PMIX Enable				
				0 = Disabled				
				1 = Enabled				
	11	LINEOUT2N_ENA	0b	LINEOUT2N Line Out and LINEOUT2NMIX Enable				
				0 = Disabled				
				1 = Enabled				
	10	LINEOUT2P_ENA	0b	LINEOUT2P Line Out and				
				LINEOUT2PMIX Enable				
				0 = Disabled				
				1 = Enabled				
	9	SPKRVOL_ENA	0b	SPKMIXR Mixer and SPKRVOL PGA Enable				
				0 = Disabled				
				1 = Enabled				
				Note that SPKMIXR and SPKRVOL are also enabled when SPKOUTR_ENA is set.				
	8	SPKLVOL_ENA	0b	SPKMIXL Mixer and SPKLVOL PGA Enable				
				0 = Disabled				
				1 = Enabled				
				Note that SPKMIXL and SPKLVOL are also enabled when SPKOUTL_ENA is set.				
	7	MIXOUTLVOL_E	0b	MIXOUTL Left Volume Control Enable				
		NA		0 = Disabled				
				1 = Enabled				
	6	MIXOUTRVOL_E	0b	MIXOUTR Right Volume Control Enable				
		NA		0 = Disabled				
				1 = Enabled				
	5	MIXOUTL_ENA	0b	MIXOUTL Left Output Mixer Enable				
				0 = Disabled				
				1 = Enabled				
	4	MIXOUTR_ENA	0b	MIXOUTR Right Output Mixer Enable				
				0 = Disabled				
				1 = Enabled				

REGISTER ADDRESS	BIT	LABEL	DEFAULT	DESCRIPTION
	1	DACL_ENA	0b	Left DAC Enable
				0 = DAC disabled
				1 = DAC enabled
	0	DACR_ENA	0b	Right DAC Enable
				0 = DAC disabled
				1 = DAC enabled
R60 (3Ch)	1	FLL_OSC_ENA	0b	FLL Oscillator Enable
FLL Control 1				0 = FLL disabled
				1 = FLL enabled
				(Note that this field is required for free- running FLL modes only)
	0	FLL_ENA	0b	FLL Enable
				0 = FLL disabled
				1 = FLL enabled
R70 (46h)	8	WSEQ_ENA	0b	Write Sequencer Enable.
Write				0 = Disabled
Sequencer 0				1 = Enabled
R76 (4Ch)	15	CP_ENA	0b	Enable charge-pump digits
Charge Pump				0 = disable
1				1 = enable
				Note: Default value of R76[14:0] (0x1F25h) must not be changed when enabling/disabling the Charge Pump
R84 (54h)	1	DCS_ENA_CHAN	0b	DC Servo enable for HPOUT1R
DC Servo 0		_1		0 = disabled
				1 = enabled
	0	DCS_ENA_CHAN	0b	DC Servo enable for HPOUT1L
		_0		0 = disabled
				1 = enabled
R98 (62h)	0	EQ_ENA	0b	EQ enable
EQ 1				0 = EQ disabled
				1 = EQ enabled

Table 108 Power Management

POWER ON RESET

The WM8993 includes Power-On Reset (POR) circuits, which are used to reset the digital logic into a default state after power up. The POR circuits derive their output from AVDD1, AVDD2 and DCVDD. The internal POR signal is asserted low when AVDD1, AVDD2 and DCVDD are all below minimum thresholds.

The specific behaviour of the circuit will vary, depending on relative timing of the supply voltages. Typical scenarios are illustrated in Figure 69 and Figure 70.

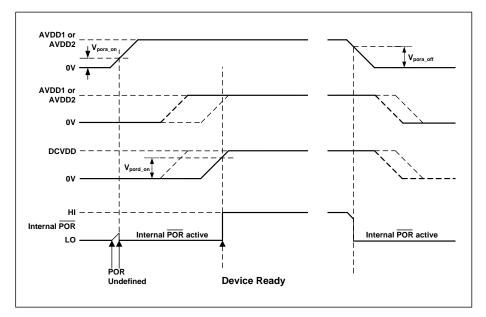


Figure 69 Power On Reset timing - AVDD1/2 enabled first

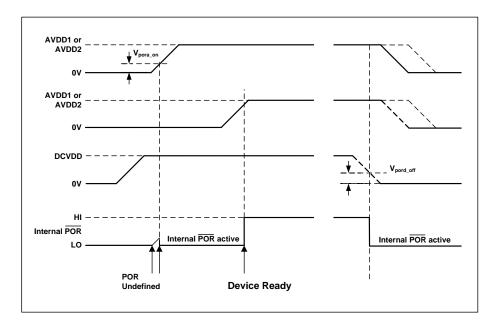


Figure 70 Power On Reset timing - DCVDD enabled first

The POR signal is undefined until AVDD1 or AVDD2 has exceeded the minimum threshold, V_{pora_on} Once this threshold has been exceeded, POR is asserted low and the chip is held in reset. In this condition, all writes to the control interface are ignored. Once AVDD1, AVDD2 and DCVDD have all reached their respective power on thresholds, POR is released high, all registers are in their default state, and writes to the control interface may take place.

Note that a minimum power-on reset period, T_{POR} , applies even if AVDD1, AVDD2 and DCVDD have zero rise time. (This specification is guaranteed by design rather than test.)

On power down, POR is asserted low when any of AVDD1, AVDD2 or DCVDD falls below their respective power-down thresholds.

SYMBOL	DESCRIPTION	MIN	TYP	MAX	UNIT
V _{pora_on}	Power-On threshold (AVDD1 or AVDD2)		1.52		V
V _{pora_off}	Power-Off threshold (AVDD1 or AVDD2)		1.5		V
V _{pord_on}	Power-On threshold (DCVDD)		0.92		V
V_{pord_off}	Power-Off threshold (DCVDD)		0.9		V
T _{POR}	Minimum Power-On Reset period		100		ns

Typical Power-On Reset parameters for the WM8993 are defined in Table 109.

Table 109 Typical Power-On Reset parameters

QUICK START-UP AND SHUTDOWN

The default control sequences (see "Control Write Sequencer") contain only the register writes necessary to enable or disable specific output drivers. It is therefore necessary to configure the signal path and gain settings before commanding any of the default start-up sequences.

This section describes minimum control sequences to configure the WM8993 for DAC to Headphone playback. Note that these sequences are provided for guidance only; application software should be verified and tailored to ensure optimum performance.

Table 110 describes an example control sequence to enable the direct DAC to Headphone path. This involves DAC enable, signal path configuration and mute control, together with the default "Headphone Cold Start-Up" sequence. Table 111 describes an example control sequence to disable the direct DAC to Headphone path. Note that these sequences are provided for guidance only; Application software should be verified and tailored to ensure optimum performance.

REGISTER	VALUE	DESCRIPTION
R3 (03h)	0003h	Enable DACL and DACR
R45 (2Dh)	0100h	Enable path from DACL to HPOUT1L
R46 (2Eh)	0100h	Enable path from DACR to HPOUT1R
R73 (49h)	0100h	Initiate Control Write Sequencer at Index Address 0 (Headphone 'cold' Start-Up)
		Delay 300ms
		Note: Delay must inserted in the sequence to allow the Control Write Sequencer to finish. Any control interface writes to the CODEC will be ignored while the Control Write Sequencer is running.
R10 (0Ah)	0000h	Soft un-mute DAC

Table 110 DAC to Headphone Direct Start-Up Sequence

REGISTER	VALUE	DESCRIPTION
R10 (0Ah)	0004h	Soft mute DAC
R73 (49h)	012Ah	Initiate Control Write Sequencer at Index Address 42 (Generic Shut-Down)
		Delay 525ms
		Note: Delay must inserted in the sequence to allow the Control Write Sequencer to finish. Any control interface writes to the CODEC will be ignored while the Control Write Sequencer is running.
R45 (2Dh)	0000h	Disable path from DACL to HPOUT1L
R46 (2Eh)	0000h	Disable path from DACR to HPOUT1R
R3 (03h)	0000h	Disable DACL and DACR

Table 111 DAC to Headphone Direct Shut-Down Sequence

In both cases, the WSEQ_BUSY bit (in Register R74, see Table 93) will be set to 1 while the Control Write Sequence runs. When this bit returns to 0, the remaining steps of the sequence may be executed. Note that it is also possible to use GPIO or Interrupt functions to confirm the status of the Control Write Sequencer - see "General Purpose Input/Output".

SOFTWARE RESET AND DEVICE ID

The device ID can be read back from register 0. Writing to this register will reset the device.

The software reset causes most control registers to be reset to their default state. Note that the Control Write Sequencer registers R12288 (3000h) through to R12799 (31FFh) are not affected by a software reset; the Control Sequences defined in these registers are retained unchanged.

REGISTER ADDRESS	BIT	LABEL	DEFAULT	DESCRIPTION
R0 (00h) Software Reset	15:0	SW_RESET [15:0]	8993h	Writing to this register resets all registers to their default state. (Note - Control Write Sequencer registers are not affected by Software Reset.) Reading from this register will indicate device family ID 8993h.

Table 112 Chip Reset and ID

THERMAL SHUTDOWN

The WM8993 incorporates a temperature sensor which detects when the device temperature is within normal limits or if the device is approaching a hazardous temperature condition. The Temp OK flag can be polled at any time, or output directly on the GPIO1 pin, or may be used to generate Interrupt events.

The temperature sensor can be configured to automatically disable the audio outputs of the WM8993 in response to an overtemperature condition (approximately 150°C).

The temperature sensor is enabled by setting the TSHUT_ENA register bit. When the TSHUT_OPDIS is also set, then a device over-temperature condition will cause the speaker outputs (SPKOUTL and SPKOUTR) of the WM8993 to be disabled; this response is likely to prevent any damage to the device attributable to the large currents of the output drivers.

Note that, to prevent pops and clicks, TSHUT_ENA and TSHUT_OPDIS should only be updated whilst the speaker and headphone outputs are disabled.

REGISTER ADDRESS	BIT	LABEL	DEFAULT	DESCRIPTION				
R2 (02h)	14	TSHUT_ENA	1b	Thermal sensor enable				
Power				0 = disabled				
Management			1 = enabled					
(2)	13	TSHUT_OPDIS	1b	Thermal shutdown control				
				(Causes audio outputs to be disabled if an overtemperature occurs. The thermal sensor must also be enabled.) 0 = disabled				
				1 = enabled				

Table 113 Thermal Shutdown

REGISTER MAP

The WM8993 control registers are listed below. Note that only the register addresses described here should be accessed; writing to other addresses may result in undefined behaviour. Register bits that are not documented should not be changed from the default values.

REG	NAME	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0	DEFAULT
R0 (0h)	Software Reset								SW_RES	ET [15:0)]							8993h
R1 (1h)	Power Management (1)	0	0	SPKO UTR_E NA	SPKO UTL_E NA	HPOU T2_EN A	0	HPOU T1L_E NA	HPOU T1R_E NA	0	0	MICB2 _ENA	MICB1 _ENA	0	VMID_S	SEL [1:0]	BIAS_ ENA	0000h
R2 (2h)	Power Management (2)	0	tshut _ena	TSHUT _OPDI S	0	OPCLK _ENA	0	MIXINL _ENA	MIXIN R_ENA	_	IN1L_E NA	IN2R_ ENA	IN1R_ ENA	0	0	ADCL_ ENA	ADCR_ ENA	6000h
R3 (3h)	Power Management (3)	0	0	LINEO UT1N_ ENA	Lineo Ut1p_ Ena	LINEO UT2N_ ENA	Lineo Ut2p_ Ena		SPKLV OL_EN A		MIXOU TRVOL _ENA	MIXOU TL_EN A	MIXOU TR_EN A	0	0	DACL_ ENA	DACR_ ENA	0000h
R4 (4h)	Audio Interface (1)	AIFAD CL_SR C	AIFAD CR_SR C	AIFAD C_TD M	AIFAD C_TD M_CH AN	0	0	BCLK_ DIR	AIF_B CLK_I NV	AIF_LR CLK_I NV	AIF_W	/L [1:0]	AIF_F	ИТ [1:0]	0	0	0	4050h
R5 (5h)	Audio Interface (2)	AIFDA CL_SR C	AIFDA CR_SR C	AIFDA C_TD M	AIFDA C_TD M_CH AN	-	300ST :0]	0	0	0	0	0	DAC_C OMP	DAC_C OMPM ODE	ADC_C OMP	ADC_C OMPM ODE	LOOP BACK	4000h
R6 (6h)	Clocking 1	TOCLK _RATE	TOCLK _ENA	0		OPCLK_	DIV [3:0]		DC	LK_DIV	[2:0]	0		BCLK_I	DIV [3:0]		0	01C8h
R7 (7h)	Clocking 2	MCLK_ SRC	SYSCL K_SRC	0	MCLK_ DIV	0	MCLK_ INV	0	0	AD)C_DIV [2	2:0]	DA	C_DIV [2	2:0]	0	0	0000h
R8 (8h)	ADCLRC Generation	AIF_M STR1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0000h
R9 (9h)	DACLRC Generation	0	0	AIF_T RIS	0	LRCLK _DIR					LRCL	K_RATE	[10:0]					0040h
R10 (Ah)	DAC CTRL	0	0	DAC_ OSR12 8	0	0	0	DAC_ MONO	DAC_S B_FILT		DAC_U NMUT E_RA MP	DEEM	PH [1:0]	0	DAC_ MUTE	DACL_ DATIN V	DACR_ DATIN V	0004h
R11 (Bh)	Left DAC Digital Volume	0	0	0	0	0	0	0	DAC_V U				DACL_\	/OL [7:0]	-		-	00C0h
R12 (Ch)	Right DAC Digital Volume	0	0	0	0	0	0	0	DAC_V U				DACR_\	/OL [7:0]				00C0h
R13 (Dh)	Digital Side Tone	0	0	0	AD	CL_DAC	_SVOL [3:0]	AD	CR_DAC	C_SVOL [[3:0]	0	_	O_DACL :0]		O_DAC 1:0]	0000h
R14 (Eh)	ADC CTRL	0	0	0	0	0	0	ADC_ OSR12 8	ADC_H PF	0		PF_CUT :0]	0	0	0	ADCL_ DATIN V	ADCR_ DATIN V	0300h
R15 (Fh)	Left ADC Digital Volume	0	0	0	0	0	0	0	ADC_V U				ADCL_\	/OL [7:0]				00C0h
R16 (10h)	Right ADC Digital Volume	0	0	0	0	0	0	0	ADC_V U				ADCR_\	/OL [7:0]				00C0h
R18 (12h)	GPIO CTRL 1	JD2_S C_EIN T	JD2_EI NT	WSEQ _EINT	IRQ	TEMP OK_EI NT	JD1_S C_EIN T		FLL_L OCK_E INT	GPI8_ EINT	GPI7_ EINT	0	0	0	0	0	GPIO1 _EINT	0000h
R19 (13h)	GPIO1 & GPIO2	0	0	0	0	0	0	0	0	0	0	GPIO1 _PU	GPIO1 _PD		GPIO1_	SEL [3:0]		0010h
R20 (14h)	IRQ_DEBOUNC E	JD2_S C_DB	JD2_D B	WSEQ _DB	0	TEMP OK_DB	JD1_S C_DB	JD1_D B	FLL_L OCK_ DB	GPI8_ DB	0	0	0	GPI7_ DB	0	0	GPIO1 _DB	0000h

REG	NAME	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0	DEFAULT
R21 (15h)	Input Mixer1	0	0	0	0	0	0	0	0	0	INPUT S_CLA MP	0	0	0	0	0	0	0000h
R22 (16h)	GPIOCTRL 2	1	0	IM_JD 2_EINT	IM_JD 2_SC_ EINT	IM_TE MPOK _EINT	IM_JD 1_SC_ EINT	IM_JD 1_EINT	IM_FLL _LOCK _EINT	0	IM_GPI 8_EINT	IM_GPI 01_EI NT	GPI8_ ENA	0		IM_WS EQ_EI NT	gpi7_ Ena	8000h
R23 (17h)	GPIO_POL	JD2_S C_POL	JD2_P OL	WSEQ _POL	IRQ_P OL	TEMP OK_P OL	JD1_S C_POL	JD1_P OL	FLL_L OCK_P OL	GPI8_ POL	GPI7_ POL	0	0	0	0	0	GPIO1 _POL	0800h
R24 (18h)	Left Line Input 1&2 Volume	0	0	0	0	0	0	0	IN1_V U	IN1L_ MUTE	IN1L_Z C	0		IN1	L_VOL [4:0]		008Bh
R25 (19h)	Left Line Input 3&4 Volume	0	0	0	0	0	0	0	IN2_V U	IN2L_ MUTE	IN2L_Z C	0		IN2	2L_VOL [4:0]		008Bh
R26 (1Ah)	Right Line Input 1&2 Volume	0	0	0	0	0	0	0	IN1_V U	IN1R_ MUTE	IN1R_ ZC	0		IN1	R_VOL [4:0]		008Bh
R27 (1Bh)	Right Line Input 3&4 Volume	0	0	0	0	0	0	0	IN2_V U	IN2R_ MUTE	IN2R_ ZC	0		IN2	R_VOL [4:0]		008Bh
R28 (1Ch)	Left Output Volume	0	0	0	0	0	0	0	HPOU T1_VU	HPOU T1L_Z C	HPOU T1L_M UTE_N		Н	POUT1L	_VOL [5:	0]		006Dh
R29 (1Dh)	Right Output Volume	0	0	0	0	0	0	0	HPOU T1_VU	HPOU T1R_Z C	HPOU T1R_M UTE_N		HI	POUT1R	2_VOL [5:	:0]		006Dh
R30 (1Eh)	Line Outputs Volume	0	0	0	0	0	0	0	0	0	LINEO UT1N_ MUTE	LINEO UT1P_ MUTE	LINEO UT1_V OL	0	LINEO UT2N_ MUTE	LINEO UT2P_ MUTE	LINEO UT2_V OL	0066h
R31 (1Fh)	HPOUT2 Volume	0	0	0	0	0	0	0	0	0	0	HPOU T2_MU TE	HPOU T2_VO L	0	0	0	0	0020h
R32 (20h)	Left OPGA Volume	0	0	0	0	0	0	0	MIXOU T_VU	MIXOU TL_ZC	MIXOU TL_MU TE_N		Μ	IXOUTL,	_VOL [5:	0]		0079h
R33 (21h)	Right OPGA Volume	0	0	0	0	0	0	0	MIXOU T_VU	MIXOU TR_ZC	MIXOU		М	IXOUTR	_VOL [5:	0]		0079h
R34 (22h)	SPKMIXL Attenuation	0	0	0	0	0	0	0	0	0	0	MIXINL _SPKM IXL_V OL	IN1LP_ SPKMI XL_VO L	MIXOU TL_SP KMIXL _VOL	SPKMI	SPKMIX [1	_	0003h
R35 (23h)	SPKMIXR Attenuation	0	0	0	0	0	0	0	SPKO UT_CL ASSAB _MOD E	0	0	MIXIN R_SPK MIXR_ VOL	_	MIXOU TR_SP	DACR_ SPKMI XR_VO L	SPKMIX [1	_	0003h
R36 (24h)	SPKOUT Mixers	0	0	0	0	0	0	0	0	0	0	IN2LP_ TO_SP KOUTL	XL_TO	SPKMI XR_TO _SPKO UTL	TO_SP	SPKMI XL_TO _SPKO UTR		0011h
R37 (25h)		0	0	0	0	0	0	0	0	0	0	SPKOU	TL_BOO	ST [2:0]	SPKOU	TR_BOC	OST [2:0]	0000h
R38 (26h)	Speaker Volume Left	0	0	0	0	0	0	0	SPKO UT_VU	SPKO UTL_Z C	SPKO UTL_M UTE_N		SI	PKOUTL	VOL [5:	:0]		0079h
R39 (27h)	Speaker Volume Right	0	0	0	0	0	0	0	SPKO UT_VU	SPKO UTR_Z C	SPKO UTR_ MUTE_ N	SPKOUTR_VOL [5:0]				0079h		
R40 (28h)	Input Mixer2	0	0	0	0	0	0	0	0	IN2LP_ TO_IN 2L	IN2LN_ TO_IN 2L	IN1LP_ TO_IN 1L	IN1LN_ TO_IN 1L	IN2RP _TO_I N2R	IN2RN _TO_I N2R	IN1RP _TO_I N1R	IN1RN _TO_I N1R	0000h

REG	NAME	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0	DEFAULT
R41 (29h)	Input Mixer3	0	0	0	0	0	0	0	IN2L_T O_MIXI NL	IN2L_ MIXINL _VOL	0	IN1L_T O_MIXI NL	IN1L_ MIXINL _VOL	0	MIXOU	TL_MIXII [2:0]	NL_VOL	0000h
R42 (2Ah)	Input Mixer4	0	0	0	0	0	0	0	IN2R_ TO_MI	IN2R_ MIXIN R_VOL	0	IN1R_ TO_MI XINR	IN1R_ MIXIN R_VOL	0	MIXOUT	TR_MIXII [2:0]	NR_VOL	0000h
R43 (2Bh)	Input Mixer5	0	0	0	0	0	0	0	IN1LF	P_MIXINL [2:0]	VOL	0	0	0	IN2LF	P_MIXINL [2:0]	VOL	0000h
R44 (2Ch)	Input Mixer6	0	0	0	0	0	0	0	IN1RF	P_MIXINF [2:0]	R_VOL	0	0	0	IN2LF	P_MIXINF [2:0]	R_VOL	0000h
R45 (2Dh)	Output Mixer1	0	0	0	0	0	0	0	DACL_ TO_HP OUT1L	R_TO_	MIXINL _TO_M IXOUT L	_TO_M	TO_MI	IN1R_ TO_MI XOUTL	_	IN2LP_ TO_MI XOUTL	_	0000h
R46 (2Eh)	Output Mixer2	0	0	0	0	0	0	0	TO_HP	MIXINL _TO_M IXOUT R		IN2LN_ TO_MI XOUT R		in1l_t o_mix outr	TO_MI	IN2RP _TO_M IXOUT R	TO_MI	0000h
R47 (2Fh)	Output Mixer3	0	0	0	0	IN2LP_	MIXOUT [2:0]	TL_VOL	IN2LN_	_MIXOUT [2:0]	rl_vol	IN1R_	MIXOUT [2:0]	L_VOL	IN1L_	MIXOUT [2:0]	L_VOL	0000h
,	Output Mixer4	0	0	0	0	IN2RP_	MIXOUT [2:0]	R_VOL	IN2RN_	_MIXOUT [2:0]	rr_vol	IN1L_I	VIXOUTI [2:0]	R_VOL	IN1R_	MIXOUT [2:0]	R_VOL	0000h
	Output Mixer5	0	0	0	0		MIXOUT [2:0]			[2:0]	TL_VOL		[2:0]			[2:0]		0000h
R50 (32h)	Output Mixer6	0	0	0	0	DACR_	MIXOUT [2:0]	R_VOL	IN2LN_	MIXOUT [2:0]	R_VOL	MIXINL.	_MIXOU ⁻ [2:0]	TR_VOL	MIXINR	_MIXOU [2:0]	TR_VOL	0000h
R51 (33h)	HPOUT2 Mixer	0	0	0	0	0	0	0	0	0	0	IN2LR P_TO_ HPOU T2	_TO_H	MIXOU TRVOL _TO_H POUT2	0	0	0	0000h
R52 (34h)	Line Mixer1	0	0	0	0	0	0	0	0	0	TL_TO _LINE	MIXOU TR_TO _LINE OUT1N	LINEO UT1_M ODE	0	IN1R_ TO_LI NEOU T1P	IN1L_T O_LIN EOUT1 P		0000h
R53 (35h)	Line Mixer2	0	0	0	0	0	0	0	0	0	TR_TO _LINE	MIXOU TL_TO _LINE OUT2N	LINEO UT2_M ODE	0	IN1L_T O_LIN EOUT2 P	IN1R_ TO_LI NEOU T2P	MIXOU TR_TO _LINE OUT2P	0000h
R54 (36h)	Speaker Mixer	0	0	0	0	0	0	0	SPKAB _REF_ SEL	_TO_S	MIXIN R_TO_ SPKMI XR	TO_SP			TR_TO	DACL_ TO_SP KMIXL	TO_SP	0000h
R55 (37h)	Additional Control	0	0	0	0	0	0	0	0		LINEO UT2_F B	0	0	0	0	0	VROI	0000h
R56 (38h)	AntiPOP1	0	0	0	0	0	0	0	0	LINEO UT_VM ID_BU F_ENA	HPOU T2_IN_ ENA	LINEO UT1_D ISCH	LINEO UT2_D ISCH	0	0	0	0	0000h
R57 (39h)	AntiPOP2	0	0	0	0	0	0	0	0	0		_RAMP :0]	0	VMID_ BUF_E NA	START UP_BI AS_EN A	BIAS_ SRC	VMID_ DISCH	0000h
R58 (3Ah)		0	0	0	0	0	0	0	0		CTHR :0]	JD)_THR [2	:0]	JD_EN A	MICB2 _LVL	MICB1 _LVL	0000h
	FLL Control 1	0	0	0	0	0	0	0	0	0	0	0	0	0		FLL_O SC_EN A		0000h
R61 (3Dh)	FLL Control 2	0	0	0	0	0	FLL_		/ [2:0]	0	0	0	0	0	FLL_	_FRATIO	[2:0]	0000h

REG	NAME	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0	DEFAULT
R62 (3Eh)	FLL Control 3								FLL_K	([15:0]								0000h
R63 (3Fh)	FLL Control 4	0					FLL_	N [9:0]					0	0	0	0	0	2EE0h
R64 (40h)	FLL Control 5	0	0	0		FLL _.	_FRC_N	CO_VAL	[5:0]		FLL_F RC_N CO	0	_	FLL_CLK_REF_ 0 FLL_CLK_SRC DIV [1:0] [1:0]				0002h
R65 (41h)	Clocking 3	0	0	C	CLK_DCS	_DIV [3:	0]	SAMF	PLE_RAT	E [2:0]	0	0	C	LK_SYS_	RATE [3	3:0]	CLK_D SP_EN A	2287h
R66 (42h)	Clocking 4	0	0	0	0	0	0	DAC_D IV4	0	0		C	CLK_256	K_DIV [5:	0]		SR_M ODE	025Fh
R69 (45h)	Bus Control 1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	CLK_S YS_EN A		0002h
R70 (46h)	Write Sequencer 0	0	0	0	0	0	0	0	WSEQ _ENA	0	0	0	١	WSEQ_W	/RITE_IN	NDEX [4:1	0]	0000h
R71 (47h)	Write Sequencer 1	0	WSEQ	_DATA_ [2:0]	WIDTH	WSE	Q_DATA	A_START	[3:0]			l.	WSEQ_A	DDR [7:0)]			0000h
. ,	Write Sequencer 2	0	WSEQ _EOS	0	0	V	VSEQ_D	ELAY [3:	-		1	,	WSEQ_E)ATA [7:()]			0000h
R73 (49h)	Write Sequencer 3	0	0	0	0	0	0	WSEQ _ABOR T		0	0		WSE	Q_STAR	T_INDE	X [5:0]		0000h
R74 (4Ah)	Write Sequencer 4	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	WSEQ _BUSY	0000h
R75 (4Bh)	Write Sequencer 5	0	0	0	0	0	0	0	0	0	0 0 WSEQ_CURRENT_INDEX [5:0]					T	0000h	
. ,	Charge Pump 1	CP_EN A	0	0	1	1	1	1	1	0	0	1	0	0	1	0	1	1F25h
R81 (51h)	Class W 0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	CP_DY N_PW R	0004h
R84 (54h)	DC Servo 0	0	0		DCS_T RIG_SI NGLE_ 0	0	0	RIG_S	DCS_T RIG_S ERIES _0	0	0	RIG_S		RIG_D			DCS_E NA_CH AN_0	0000h
R85 (55h)	DC Servo 1	0	0	0	0			DCS_SE	RIES_NO	D_01 [6:0)]		0	DCS_1	FIMER_F	PERIOD_	01 [3:0]	054Ah
R87 (57h)	DC Servo 3		-	DCS_	_DAC_W	R_VAL_	1 [7:0]					DCS	_DAC_W	R_VAL_	0 [7:0]	-		0000h
R88 (58h)	DC Servo Readback 0	0	0	0	0	0	0		CAL_CO TE [1:0]	0	0	_COM	AC_WR PLETE :0]	0	0	_COM	TARTUP IPLETE :0]	0000h
R89 (59h)	DC Servo Readback 1	0	0	0	0	0	0	0	0			DCS	_INTEG_	_CHAN_1	[7:0]			0000h
R90 (5Ah)	DC Servo Readback 2	0	0	0	0	0	0	0	0				_INTEG_	_CHAN_() [7:0]			0000h
R96 (60h)	Analogue HP 0	0	0	0	0	0	0	0	HPOU T1_AU TO_PU	HPOU T1L_R MV_S HORT		HPOU T1L_D LY	0	HPOU T1R_R MV_S HORT		HPOU T1R_D LY	0	0100h
R98 (62h)	EQ1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	EQ_EN A	0000h
R99 (63h)	EQ2	0	0	0	0	0	0	0	0	0	0 0 EQ_B1_GAIN [4:0]					000Ch		
R100 (64h)	EQ3	0	0	0	0	0	0	0	0	0 0 0 EQ_B2_GAIN [4:0]						000Ch		
R101 (65h)	EQ4	0	0	0	0	0	0	0	0						000Ch			
R102 (66h)	EQ5	0	0	0	0	0	0	0	0	0 0 0 EQ_B4_GAIN [4:0]				000Ch				

REG	NAME	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0	DEFAULT
R103 (67h)	EQ6	0	0	0	0	0	0	0	0	0	0	0		EQ_	B5_GAIN	1 [4:0]		000Ch
R104 (68h)	EQ7							-	EQ_B1	_A [15:0]	-	•						0FCAh
R105 (69h)	EQ8								EQ_B1	_B [15:0]								0400h
R106	EQ9								EQ_B1_	PG [15:0]							00D8h
(6Ah) R107	EQ10		EQ_B2_A [15:0]											1EB5h				
(6Bh) R108	EQ11		EQ_B2_B [15:0]											F145h				
(6Ch) R109	EQ12								EQ B2	_C [15:0]								0B75h
(6Dh) R110	EQ13									PG [15:0	1							01C5h
(6Eh)]							
R111 (6Fh)	EQ14								EQ_B3	_A [15:0]								1C58h
R112 (70h)	EQ15								EQ_B3	_B [15:0]								F373h
R113 (71h)	EQ16								EQ_B3	_C [15:0]								0A54h
R114 (72h)	EQ17		EQ_B3_PG [15:0]										0558h					
. ,	EQ18		EQ_B4_A [15:0]										168Eh					
R116	EQ19								EQ_B4	_B [15:0]								F829h
(74h) R117	EQ20								EQ_B4	_C [15:0]								07ADh
(75h) R118	EQ21								EQ_B4_	PG [15:0]							1103h
(76h) R119	EQ22								EQ B5	_A [15:0]								0564h
(77h) R120	EQ23																	0559h
(78h)										_B [15:0]								
R121 (79h)	EQ24			1				1	EQ_B5_	PG [15:0]		-		1	1			4000h
R122 (7Ah)	Digital Pulls	0	0	0	0	0	0	0	0	MCLK_ PU	MCLK_ PD	DACD AT_PU	DACD AT_PD	LRCLK _PU	LRCLK _PD	BCLK_ PU	BCLK_ PD	0000h
R123 (7Bh)	DRC Control 1	DRC_E NA	DRC_E DRC_D 0 0 DRC_S DRC_ DRC_A DRC_ 0 0 DRC_THRESH DRC_MINGAIN DRC_MAXGAIN										0F08h					
R124	DRC Control 2	DRC	TH ATTAC	K_RATE	[3:0]	H_ENA DRO	NA	P_ENA Y_RATE	ENA		DRC	THRES	H_COMF	P [5:0]		0	0	0000h
(7Ch)	DRC Control 3	20				2					1	-	<u> </u>					
R125 (7Dh)			DKC_A	MP_CO	WP [4:0]		DKC_F	0_SLOP P [2:0]	E_COM	DRC_F F_DEL AY	U	0	0		HRESH [1:0]		RATE_Q [1:0]	0080h
R126 (7Eh)	DRC Control 4	DRC_R	1_SLOP P [2:0]	E_COM	[DRC_STA	ARTUP_	Gain [4:0)]	0	0	0	0	0	0	0	0	0000h

REGISTER BITS BY ADDRESS

REGISTER ADDRESS	BIT	LABEL	DEFAULT	DESCRIPTION
R0 (00h) Software Reset	15:0	SW_RESET [15:0]	1000_1001 _1001_001 _1	Writing to this register resets all registers to their default state. (Note - Control Write Sequencer registers are not affected by Software Reset.) Reading from this register will indicate device family ID 8993h.

Register 00h Software Reset

REGISTER ADDRESS	BIT	LABEL	DEFAULT	DESCRIPTION
R1 (01h) Power Management (1)	13	SPKOUTR_ENA	0	SPKMIXR Mixer, SPKRVOL PGA and SPKOUTR Output Enable 0 = Disabled 1 = Enabled
	12	SPKOUTL_ENA	0	SPKMIXL Mixer, SPKLVOL PGA and SPKOUTL Output Enable 0 = Disabled 1 = Enabled
	11	HPOUT2_ENA	0	HPOUT2 Output Stage Enable 0 = Disabled 1 = Enabled
	9	HPOUT1L_ENA	0	Enables HPOUT1L input stage 0 = Disabled 1 = Enabled For normal operation, this bit should be set as the first step of the HPOUT1L Enable sequence. Note: When HPOUT1_AUTO_PU is set, the HPOUT1L_ENA bit automatically enables all stages of the left headphone driver
	8	HPOUT1R_ENA	0	Enables HPOUT1R input stage 0 = Disabled 1 = Enabled For normal operation, this bit should be set as the first step of the HPOUT1R Enable sequence. Note: When HPOUT1_AUTO_PU is set, the HPOUT1R_ENA bit automatically enables all stages of the right headphone driver
	5	MICB2_ENA	0	Microphone Bias 2 Enable 0 = OFF (high impedance output) 1 = ON
	4	MICB1_ENA	0	Microphone Bias 1 Enable 0 = OFF (high impedance output) 1 = ON
	2:1	VMID_SEL [1:0]	00	 VMID Divider Enable and Select 00 = VMID disabled (for OFF mode) 01 = 2 x 40k□ divider (for normal operation) 10 = 2 x 240k□ divider (for low power standby) 11 = Reserved
	0	BIAS_ENA	0	Enables the Normal bias current generator (for all analogue functions) 0 = Disabled 1 = Enabled

Register 01h Power Management (1)

REGISTER ADDRESS	BIT	LABEL	DEFAULT	DESCRIPTION
R2 (02h)	14	TSHUT_ENA	1	Thermal sensor enable
Power				0 = disabled
Management				1 = enabled
(2)	13	TSHUT_OPDIS	1	Thermal shutdown control
				(Causes audio outputs to be disabled if an overtemperature occurs. The thermal sensor must also be enabled.)
				0 = disabled
				1 = enabled
	11	OPCLK_ENA	0	GPIO Clock Output Enable
				0 = disabled
				1 = enabled
	9	MIXINL_ENA	0	Left Input Mixer Enable
				(Enables MIXINL and RXVOICE input to MIXINL)
				0 = Disabled
				1 = Enabled
	8	MIXINR_ENA	0	Right Input Mixer Enable
				(Enables MIXINR and RXVOICE input to MIXINR)
				0 = Disabled
				1 = Enabled
	7	IN2L_ENA	0	IN2L Input PGA Enable
				0 = Disabled
				1 = Enabled
	6	IN1L_ENA	0	IN1L Input PGA Enable
				0 = Disabled
				1 = Enabled
	5	IN2R_ENA	0	IN2R Input PGA Enable
				0 = Disabled
				1 = Enabled
	4	IN1R_ENA	0	IN1R Input PGA Enable
				0 = Disabled
				1 = Enabled
	1	ADCL_ENA	0	Left ADC Enable
				0 = ADC disabled
				1 = ADC enabled
	0	ADCR_ENA	0	Right ADC Enable
				0 = ADC disabled
				1 = ADC enabled

Register 02h Power Management (2)

REGISTER ADDRESS	BIT	LABEL	DEFAULT	DESCRIPTION
R3 (03h) Power Management	13	LINEOUT1N_EN A	0	LINEOUT1N Line Out and LINEOUT1NMIX Enable 0 = Disabled 1 = Enabled
(3)	12	LINEOUT1P_EN A	0	LINEOUT1P Line Out and LINEOUT1PMIX Enable 0 = Disabled 1 = Enabled
	11	LINEOUT2N_EN	0	LINEOUT2N Line Out and LINEOUT2NMIX Enable

REGISTER ADDRESS	BIT	LABEL	DEFAULT	DESCRIPTION
		А		0 = Disabled
				1 = Enabled
	10	LINEOUT2P_EN	0	LINEOUT2P Line Out and LINEOUT2PMIX Enable
		A		0 = Disabled
				1 = Enabled
	9	SPKRVOL_ENA	0	SPKMIXR Mixer and SPKRVOL PGA Enable
				0 = Disabled
				1 = Enabled
				Note that SPKMIXR and SPKRVOL are also enabled when SPKOUTR_ENA is set.
	8	SPKLVOL_ENA	0	SPKMIXL Mixer and SPKLVOL PGA Enable
				0 = Disabled
				1 = Enabled
				Note that SPKMIXL and SPKLVOL are also enabled when SPKOUTL_ENA is set.
	7	MIXOUTLVOL_	0	MIXOUTL Left Volume Control Enable
		ENA		0 = Disabled
				1 = Enabled
	6	MIXOUTRVOL_	0	MIXOUTR Right Volume Control Enable
		ENA		0 = Disabled
				1 = Enabled
	5	MIXOUTL_ENA	0	MIXOUTL Left Output Mixer Enable
				0 = Disabled
				1 = Enabled
	4	MIXOUTR_ENA	0	MIXOUTR Right Output Mixer Enable
				0 = Disabled
				1 = Enabled
	1	DACL_ENA	0	Left DAC Enable
				0 = DAC disabled
				1 = DAC enabled
	0	DACR_ENA	0	Right DAC Enable
				0 = DAC disabled
				1 = DAC enabled

Register 03h Power Management (3)

REGISTER ADDRESS	BIT	LABEL	DEFAULT	DESCRIPTION
R4 (04h) Audio	15	AIFADCL_SRC	0	Left Digital Audio interface source
Interface (1)				0 = Left ADC data is output on left channel 1 = Right ADC data is output on left channel
	14	AIFADCR_SRC	1	Right Digital Audio interface source
	14	AIFADOR_SRC	1	0 0
				0 = Left ADC data is output on right channel 1 = Right ADC data is output on right channel
	13	AIFADC_TDM	0	ADC TDM Enable
				0 = Normal ADCDAT operation
				1 = TDM enabled on ADCDAT
	12	AIFADC_TDM_	0	ADCDAT TDM Channel Select
		CHAN		0 = ADCDAT outputs data on slot 0
				1 = ADCDAT output data on slot 1
	9	BCLK_DIR	0	BCLK Direction
				(Forces BCLK clock to be output in slave mode)

REGISTER ADDRESS	BIT	LABEL	DEFAULT	DESCRIPTION
				0 = BCLK normal operation
				1 = BCLK clock output enabled
	8	AIF_BCLK_INV	0	BCLK Invert
				0 = BCLK not inverted
				1 = BCLK inverted
				Note that AIF_BCLK_INV selects the BCLK polarity in Master mode and in Slave mode.
	7	AIF_LRCLK_IN	0	Right, left and I2S modes – LRCLK polarity
		V		0 = normal LRCLK polarity
				1 = invert LRCLK polarity
				Note that AIF_LRCLK_INV selects the LRCLK polarity in Master mode and in Slave mode.
				DSP Mode – mode A/B select
				0 = MSB is available on 2nd BCLK rising edge after LRC rising edge (mode A)
				1 = MSB is available on 1st BCLK rising edge after LRC rising edge (mode B)
	6:5	AIF_WL [1:0]	10	Digital Audio Interface Word Length
				00 = 16 bits
				01 = 20 bits
				10 = 24 bits
				11 = 32 bits
	4:3	AIF_FMT [1:0]	10	Digital Audio Interface Format
				00 = Right justified
				01 = Left justified
				10 = I2S Format
				11 = DSP Mode

Register 04h Audio Interface (1)

REGISTER ADDRESS	BIT	LABEL	DEFAULT	DESCRIPTION
R5 (05h)	15	AIFDACL_SRC	0	Left DAC Data Source Select
Audio				0 = Left DAC outputs left interface data
Interface (2)				1 = Left DAC outputs right interface data
	14	AIFDACR_SRC	1	Right DAC Data Source Select
				0 = Right DAC outputs left interface data
				1 = Right DAC outputs right interface data
	13	AIFDAC_TDM	0	DAC TDM Enable
				0 = Normal DACDAT operation
				1 = TDM enabled on DACDAT
	12	AIFDAC_TDM_	0	DACDAT TDM Channel Select
		CHAN		0 = DACDAT data input on slot 0
				1 = DACDAT data input on slot 1
	11:10	DAC_BOOST	00	DAC Input Volume Boost
		[1:0]		00 = 0dB
				01 = +6dB (Input data must not exceed -6dBFS)
				10 = +12dB (Input data must not exceed -12dBFS)
				11 = +18dB (Input data must not exceed -18dBFS)
	4	DAC_COMP	0	DAC Companding Enable
				0 = disabled

REGISTER	BIT	LABEL	DEFAULT	DESCRIPTION
ADDRESS				
				1 = enabled
	3	DAC_COMPMO	0	DAC Companding Type
		DE		0 = µ-law
				1 = A-law
	2	ADC_COMP	0	ADC Companding Enable
				0 = disabled
				1 = enabled
	1	ADC_COMPMO	0	ADC Companding Type
		DE		0 = µ-law
				1 = A-law
	0	LOOPBACK	0	Digital Loopback Function
				0 = No loopback
				1 = Loopback enabled (ADC data output is directly input to DAC data input).

Register 05h Audio Interface (2)

REGISTER	BIT	LABEL	DEFAULT	DESCRIPTION
ADDRESS				
R6 (06h)	15	TOCLK_RATE	0	TOCLK Rate Divider (/2)
Clocking 1				0 = f / 2
				1 = f / 1
	14	TOCLK_ENA	0	TOCLK Enable
				0 = disabled
				1 = enabled
	12:9	OPCLK_DIV	0000	GPIO Output Clock Divider
		[3:0]		0000 = CLK_SYS
				0001 = CLK_SYS / 2
				0010 = CLK_SYS / 3
				0011 = CLK_SYS / 4
				0100 = CLK_SYS / 5.5
				0101 = CLK_SYS / 6
				0110 = CLK_SYS / 8
				0111 = CLK_SYS / 12
				1000 = CLK_SYS / 16
				1001 to 1111 = Reserved
	8:6	DCLK_DIV [2:0]	111	Class D Clock Divider
				000 = CLK_SYS
				001 = CLK_SYS / 2
				010 = CLK_SYS / 3
				011 = CLK_SYS / 4
				100 = CLK_SYS / 6
				101 = CLK_SYS / 8
				110 = CLK_SYS / 12
				111 = CLK_SYS / 16
				Note - this field is ignored and invalid in Automatic Clocking Configuration mode.
	4:1	BCLK_DIV [3:0]	0100	BCLK Rate
	ч. I		0100	0000 = CLK_SYS
				0000 = CLK_SYS / 1.5
				0010 = CLK_SYS / 2
				0010 = CLK_STS / 2 0011 = CLK_SYS / 3
				0011 = OLK_313/3

REGISTER ADDRESS	BIT	LABEL	DEFAULT	DESCRIPTION
				0100 = CLK_SYS / 4
				0101 = CLK_SYS / 5.5
				0110 = CLK_SYS / 6
				0111 = CLK_SYS / 8
				1000 = CLK_SYS / 11
				1001 = CLK_SYS / 12
				1010 = CLK_SYS / 16
				1011 = CLK_SYS / 22
				1100 = CLK_SYS / 24
				1101 = CLK_SYS / 32
				1110 = CLK_SYS / 44
				1111 = CLK_SYS / 48

Register 06h Clocking 1

REGISTER ADDRESS	BIT	LABEL	DEFAULT	DESCRIPTION
R7 (07h) Clocking 2	15	MCLK_SRC	0	MCLK Source Select 0 = MCLK pin 1 = GPIO1 pin
	14	SYSCLK_SRC	0	CLK_SYS Source Select 0 = MCLK 1 = FLL output
	12	MCLK_DIV	0	MCLK Divider 0 = MCLK 1 = MCLK / 2
	10	MCLK_INV	0	MCLK Invert 0 = MCLK not inverted 1 = MCLK inverted
	7:5	ADC_DIV [2:0]	000	ADC Sample Rate Divider 000 = CLK_SYS / 1 001 = CLK_SYS / 1.5 010 = CLK_SYS / 2 011 = CLK_SYS / 3 100 = CLK_SYS / 4 101 = CLK_SYS / 5.5 110 = CLK_SYS / 6 111 = Reserved Note - this field is ignored and invalid in Automatic Clocking Configuration mode.
	4:2	DAC_DIV [2:0]	000	DAC Sample Rate Divider 000 = CLK_SYS / 1 001 = CLK_SYS / 1.5 010 = CLK_SYS / 2 011 = CLK_SYS / 3 100 = CLK_SYS / 4 101 = CLK_SYS / 5.5 110 = CLK_SYS / 6 111 = Reserved Note - this field is ignored and invalid in Automatic Clocking Configuration mode.

Register 07h Clocking 2

REGISTER ADDRESS	BIT	LABEL	DEFAULT	DESCRIPTION
R8 (08h) ADCLRC Generation	15	AIF_MSTR1	0	Audio Interface 1 Master Mode Select 0 = Slave mode 1 = Master mode

Register 08h ADCLRC Generation

REGISTER ADDRESS	BIT	LABEL	DEFAULT	DESCRIPTION
R9 (09h) DACLRC	13	AIF_TRIS	0	Audio Interface Tristate
Generation				0 = Audio interface pins operate normally 1 = Tristate all audio interface pins
	11	LRCLK_DIR	0	LRCLK Direction
				(Forces LRCLK clock to be output in slave mode)
				0 = LRCLK normal operation
				1 = LRCLK clock output enabled
	10:0	LRCLK_RATE	000_0100_	LRCLK Rate
		[10:0]	0000	LRCLK clock output =
				BCLK / LRCLK_RATE
				Integer (LSB = 1)
				Valid from 82047

Register 09h DACLRC Generation

REGISTER	BIT	LABEL	DEFAULT	DESCRIPTION
ADDRESS R10 (0Ah)	13	DAC OSR128	0	DAC Oversample Rate Select
DAC CTRL	13	DAC_03R120	0	0 = disabled
				1 = enabled
				For 48kHz sample rate, the DAC oversample rate is 128fs
				when DAC_OSR128 is selected.
				This is valid in Automatic mode only. The default is 64fs.
	9	DAC_MONO	0	DAC Mono Mix
				0 = Disabled
				1 = Enabled
				Only valid when one or other DAC is disabled.
	8	DAC_SB_FILT	0	Selects DAC filter characteristics
				0 = Normal mode
				1 = Sloping stopband mode
				Note - this field is ignored and invalid in Automatic Clocking Configuration mode.
	7	DAC_MUTERAT	0	DAC Soft Mute Ramp Rate
		E		0 = Fast ramp (fs/2, maximum ramp time is 10.7ms at fs=48k)
				1 = Slow ramp (fs/32, maximum ramp time is 171ms at fs=48k)
				(Note: ramp rate scales with sample rate.)
	6	DAC_UNMUTE_	0	DAC Unmute Ramp select
		RAMP		0 = Disabling soft-mute (DAC_MUTE=0) will cause the DAC volume to change immediately to DACL_VOL and DACR_VOL settings
				1 = Disabling soft-mute (DAC_MUTE=0) will cause the DAC

REGISTER	BIT	LABEL	DEFAULT	DESCRIPTION
ADDRESS				
				volume to ramp up gradually to the DACL_VOL and DACR_VOL settings
	5:4	DEEMPH [1:0]	00	DAC De-Emphasis Control
				00 = No de-emphasis
				01 = 32kHz sample rate
				10 = 44.1kHz sample rate
				11 = 48kHz sample rate
	2	DAC_MUTE	1	DAC Soft Mute Control
				0 = DAC Un-mute
				1 = DAC Mute
	1	DACL_DATINV	0	Left DAC Invert
				0 = Left DAC output not inverted
				1 = Left DAC output inverted
	0	DACR_DATINV	0	Right DAC Invert
				0 = Right DAC output not inverted
				1 = Right DAC output inverted

Register 0Ah DAC CTRL

REGISTER ADDRESS	BIT	LABEL	DEFAULT	DESCRIPTION
R11 (0Bh) Left DAC Digital	8	DAC_VU	0	DAC Volume Update Writing a 1 to this bit will cause left and right DAC volume to be updated simultaneously
Volume	7:0	DACL_VOL [7:0]	1100_0000	Left DAC Digital Volume 00h = MUTE 01h = -71.625dB (0.375dB steps) C0h = 0dB

Register 0Bh Left DAC Digital Volume

REGISTER ADDRESS	BIT	LABEL	DEFAULT	DESCRIPTION
R12 (0Ch) Right DAC Digital	8	DAC_VU	0	DAC Volume Update Writing a 1 to this bit will cause left and right DAC volume to be updated simultaneously
Volume	7:0	DACR_VOL [7:0]	1100_0000	Right DAC Digital Volume 00h = MUTE 01h = -71.625dB (0.375dB steps) C0h = 0dB

Register 0Ch Right DAC Digital Volume

REGISTER ADDRESS	BIT	LABEL	DEFAULT	DESCRIPTION
R13 (0Dh) Digital Side Tone	12:9	ADCL_DAC_SV OL [3:0]	0000	Left Digital Sidetone Volume 0000 = -36dB 0001 = -33dB (3dB steps) 1011 = -3dB

REGISTER	BIT	LABEL	DEFAULT	DESCRIPTION
ADDRESS				
				1100 = 0dB
	8:5	ADCR_DAC_SV	0000	Right Digital Sidetone Volume
		OL [3:0]		0000 = -36dB
				0001 = -33dB
				(3dB steps)
				1011 = -3dB
				1100 = 0dB
	3:2	ADC_TO_DACL	00	Left DAC Digital Sidetone Source
		[1:0]		00 = No sidetone
				01 = Left ADC
				10 = Right ADC
				11 = Reserved
	1:0	ADC_TO_DACR	00	Right DAC Digital Sidetone Source
		[1:0]		00 = No sidetone
				01 = Left ADC
				10 = Right ADC
				11 = Reserved

Register 0Dh Digital Side Tone

REGISTER ADDRESS	BIT	LABEL	DEFAULT	DESCRIPTION
R14 (0Eh) ADC CTRL	9	ADC_OSR128	1	ADC Oversample Rate Select 0 = disabled 1 = enabled For 48kHz sample rate, the ADC oversample rate is 128fs when ADC_OSR128 is selected. Setting this bit to 0 selects 64fs mode. Default is 128fs.
	8	ADC_HPF	1	ADC Digital High Pass Filter Enable 0 = disabled 1 = enabled
	6:5	ADC_HPF_CUT [1:0]	00	ADC Digital High Pass Filter Cut-Off Frequency (fc) 00 = Hi-fi mode (fc=4Hz at fs=48kHz) 01 = Voice mode 1 (fc=127Hz at fs=16kHz) 10 = Voice mode 2 (fc=130Hz at fs=8kHz) 11 = Voice mode 3 (fc=267Hz at fs=8kHz) (Note: fc scales with sample rate.)
	1	ADCL_DATINV	0	Left ADC Invert 0 = Left ADC output not inverted 1 = Left ADC output inverted
	0	ADCR_DATINV	0	Right ADC Invert 0 = Right ADC output not inverted 1 = Right ADC output inverted

Register 0Eh ADC CTRL

REGISTER ADDRESS	BIT	LABEL	DEFAULT	DESCRIPTION
R15 (0Fh) Left ADC Digital	8	ADC_VU	0	ADC Volume Update Writing a 1 to this bit will cause left and right ADC volume to be updated simultaneously

REGISTER ADDRESS	BIT	LABEL	DEFAULT	DESCRIPTION
Volume	7:0	ADCL_VOL [7:0]	1100_0000	Left ADC Digital Volume 00h = MUTE 01h = -71.625dB (0.375dB steps) EFh = +17.625dB

Register 0Fh Left ADC Digital Volume

REGISTER ADDRESS	BIT	LABEL	DEFAULT	DESCRIPTION
R16 (10h) Right ADC Digital	8	ADC_VU	0	ADC Volume Update Writing a 1 to this bit will cause left and right ADC volume to be updated simultaneously
Volume	7:0	ADCR_VOL [7:0]	1100_0000	Right ADC Digital Volume 00h = MUTE 01h = -71.625dB (0.375dB steps) EFh = +17.625dB

Register 10h Right ADC Digital Volume

REGISTER	BIT	LABEL	DEFAULT	DESCRIPTION
ADDRESS				
R18 (12h)	15	JD2_SC_EINT	0	MICBIAS2 Short Circuit interrupt
GPIO CTRL 1				0 = interrupt not set
I				1 = interrupt is set
				Cleared when a '1' is written
	14	JD2_EINT	0	MICBIAS2 Current Detect interrupt
				0 = interrupt not set
				1 = interrupt is set
				Cleared when a '1' is written
	13	WSEQ_EINT	0	Write Sequence interrupt
				0 = interrupt not set
				1 = interrupt is set
				Cleared when a '1' is written.
				Note that the read value of WSEQ_EINT is not valid whilst
				the Write Sequencer is Busy.
	12	IRQ	0	Interrupt status (IRQ)
				Polarity is determined by IRQ_POL
				This bit is read only.
	11	TEMPOK_EINT	0	Temp OK interrupt
				0 = interrupt not set
				1 = interrupt is set
				Cleared when a '1' is written
	10	JD1_SC_EINT	0	MICBIAS1 Short Circuit interrupt
				0 = interrupt not set
				1 = interrupt is set
				Cleared when a '1' is written
	9	JD1_EINT	0	MICBIAS1 Current Detect interrupt
				0 = interrupt not set
				1 = interrupt is set
				Cleared when a '1' is written

REGISTER ADDRESS	BIT	LABEL	DEFAULT	DESCRIPTION
	8	FLL_LOCK_EIN	0	FLL Lock interrupt
		Т		0 = interrupt not set
				1 = interrupt is set
				Cleared when a '1' is written
	7	GPI8_EINT	0	GPI8 interrupt
				0 = interrupt not set
				1 = interrupt is set
				Cleared when a '1' is written
	6	GPI7_EINT	0	GPI7 interrupt
				0 = interrupt not set
				1 = interrupt is set
				Cleared when a '1' is written
	0	GPIO1_EINT	0	GPIO1 interrupt
				0 = interrupt not set
				1 = interrupt is set
				Cleared when a '1' is written

Register 12h GPIO CTRL 1

REGISTER ADDRESS	BIT	LABEL	DEFAULT	DESCRIPTION
R19 (13h) GPIO1 & GPIO2	5	GPIO1_PU	0	GPIO1 pull-up resistor enable 0 = pull-up disabled 1 = pull-up enabled
	4	GPIO1_PD	1	GPIO1 pull-down resistor enable 0 = pull-down disabled 1 = pull-down enabled
	3:0	GPIO1_SEL [3:0]	0000	GPIO1 function select 0000 = GPIO input 0001 = OPCLK 0010 = Logic 0 0011 = Logic 1 0100 = FLL_LOCK 0101 = TEMPOK 0110 = Reserved 0111 = IRQ 1000 = MICBIAS1 current detect 1001 = MICBIAS1 short circuit detect 1010 = MICBIAS2 current detect 1011 = MICBIAS2 short circuit detect 1011 = MICBIAS short circuit detect 11XX = Reserved

Register 13h GPIO1 & GPIO2

REGISTER ADDRESS	BIT	LABEL	DEFAULT	DESCRIPTION
R20 (14h) IRQ_DEBOU NCE	15	JD2_SC_DB	0	MICBIAS2 Short Circuit de-bounce 0 = disabled 1 = enabled
	14	JD2_DB	0	MICBIAS2 Current Detect de-bounce 0 = disabled

REGISTER	BIT	LABEL	DEFAULT	DESCRIPTION
ADDRESS				
				1 = enabled
	13	WSEQ_DB	0	Write Sequencer de-bounce
				0 = disabled
				1 = enabled
	11	TEMPOK_DB	0	Temp OK de-bounce
				0 = disabled
				1 = enabled
	10	JD1_SC_DB	0	MICBIAS1 Short Circuit de-bounce
				0 = disabled
				1 = enabled
	9	JD1_DB	0	MICBIAS1 Current Detect de-bounce
				0 = disabled
				1 = enabled
	8	FLL_LOCK_DB	0	FLL Lock de-bounce
				0 = disabled
				1 = enabled
	7	GPI8_DB	0	GPI8 input de-bounce
				0 = disabled
				1 = enabled
	3	GPI7_DB	0	GPI7 input de-bounce
				0 = disabled
				1 = enabled
	0	GPIO1_DB	0	GPIO1 input de-bounce
				0 = disabled
				1 = enabled

Register 14h IRQ_DEBOUNCE

REGISTER	BIT	LABEL	DEFAULT	DESCRIPTION
ADDRESS				
R21 (15h) Input Mixer1	6	INPUTS_CLAM P	0	Input pad VMID clamp 0 = Clamp de-activated 1 = Clamp activated

Register 15h Input Mixer1

REGISTER ADDRESS	BIT	LABEL	DEFAULT	DESCRIPTION
R22 (16h) GPIOCTRL 2	13	IM_JD2_EINT	0	MICBIAS2 Current Detect interrupt mask 0 = do not mask interrupt 1 = mask interrupt
	12	IM_JD2_SC_EI NT	0	MICBIAS2 Short Circuit interrupt mask 0 = do not mask interrupt 1 = mask interrupt
	11	IM_TEMPOK_EI NT	0	Temp OK interrupt mask 0 = do not mask interrupt 1 = mask interrupt
	10	IM_JD1_SC_EI NT	0	MICBIAS1 Short Circuit interrupt mask 0 = do not mask interrupt 1 = mask interrupt
	9	IM_JD1_EINT	0	MICBIAS1 Current Detect interrupt mask

REGISTER	BIT	LABEL	DEFAULT	DESCRIPTION
ADDRESS				
				0 = do not mask interrupt
				1 = mask interrupt
	8	IM_FLL_LOCK_	0	FLL Lock interrupt mask
		EINT		0 = do not mask interrupt
				1 = mask interrupt
	6	IM_GPI8_EINT	0	GPI8 interrupt mask
				0 = do not mask interrupt
				1 = mask interrupt
	5	IM_GPIO1_EINT	0	GPIO1 interrupt mask
				0 = do not mask interrupt
				1 = mask interrupt
	4	GPI8_ENA	0	GPI8 input enable
				0 = disabled
				1 = enabled
	2	IM_GPI7_EINT	0	GPI7 interrupt mask
				0 = do not mask interrupt
				1 = mask interrupt
	1	IM_WSEQ_EIN	0	Write Sequencer interrupt mask
		Т		0 = do not mask interrupt
				1 = mask interrupt
	0	GPI7_ENA	0	GPI7 input enable
				0 = disabled
				1 = enabled

Register 16h GPIOCTRL 2

REGISTER ADDRESS	BIT	LABEL	DEFAULT	DESCRIPTION
R23 (17h)	15	JD2_SC_POL	0	MICBIAS2 Short Circuit interrupt polarity
GPIO_POL				0 = active high
				1 = active low
	14	JD2_POL	0	MICBIAS2 Current Detect interrupt polarity
				0 = active high
				1 = active low
	13	WSEQ_POL	0	Write Sequencer interrupt polarity
				0 = active high (interrupt is triggered when WSEQ is busy)
				1 = active low (interrupt is triggered when WSEQ is idle)
	12	IRQ_POL	0	Interrupt status (IRQ) polarity
				0 = active high
				1 = active low
	11	TEMPOK_POL	1	Temp OK interrupt polarity
				0 = active high (interrupt is triggered when temperature is normal)
				1 = active low (interrupt is triggered when over-temperature)
	10	JD1_SC_POL	0	MICBIAS1 Short Circuit interrupt polarity
				0 = active high
				1 = active low
	9	JD1_POL	0	MICBIAS1 Current Detect interrupt polarity
				0 = active high
				1 = active low
	8	FLL_LOCK_POL	0	FLL Lock interrupt polarity

REGISTER ADDRESS	BIT	LABEL	DEFAULT	DESCRIPTION
				0 = active high (interrupt is triggered when FLL Lock is reached) 1 = active low (interrupt is triggered when FLL is not locked)
	7	GPI8_POL	0	GPI8 interrupt polarity 0 = active high 1 = active low
	6	GPI7_POL	0	GPI7 interrupt polarity 0 = active high 1 = active low
	0	GPIO1_POL	0	GPIO1 interrupt polarity 0 = active high 1 = active low

Register 17h GPIO_POL

REGISTER ADDRESS	BIT	LABEL	DEFAULT	DESCRIPTION
R24 (18h) Left Line Input 1&2	8	IN1_VU	0	Input PGA Volume Update Writing a 1 to this bit will cause IN1L and IN1R input PGA volumes to be updated simultaneously
Volume	7	IN1L_MUTE	1	IN1L PGA Mute 0 = Disable Mute 1 = Enable Mute
	6	IN1L_ZC	0	IN1L PGA Zero Cross Detector 0 = Change gain immediately 1 = Change gain on zero cross only
	4:0	IN1L_VOL [4:0]	0_1011	IN1L Volume 00000 = -16.5dB 00001 = -15dB 11110 = +28.5dB 11111 = +30dB

Register 18h Left Line Input 1&2 Volume

REGISTER ADDRESS	BIT	LABEL	DEFAULT	DESCRIPTION
R25 (19h)	8	IN2_VU	0	Input PGA Volume Update
Left Line Input 3&4				Writing a 1 to this bit will cause IN2L and IN2R input PGA volumes to be updated simultaneously
Volume	7	IN2L_MUTE	1	IN2L PGA Mute
				0 = Disable Mute
				1 = Enable Mute
	6	IN2L_ZC	0	IN2L PGA Zero Cross Detector
				0 = Change gain immediately
				1 = Change gain on zero cross only
	4:0	IN2L_VOL [4:0]	0_1011	IN2L Volume
				00000 = -16.5dB
				00001 = -15dB
				11110 = +28.5dB
				11111 = +30dB

Register 19h Left Line Input 3&4 Volume

REGISTER	BIT	LABEL	DEFAULT	DESCRIPTION
ADDRESS				
R26 (1Ah)	8	IN1_VU	0	Input PGA Volume Update
Right Line Input 1&2				Writing a 1 to this bit will cause IN1L and IN1R input PGA volumes to be updated simultaneously
Volume	7	IN1R_MUTE	1	IN1R PGA Mute
				0 = Disable Mute
				1 = Enable Mute
	6	IN1R_ZC	0	IN1R PGA Zero Cross Detector
				0 = Change gain immediately
				1 = Change gain on zero cross only
	4:0	IN1R_VOL [4:0]	0_1011	IN1R Volume
				00000 = -16.5dB
				00001 = -15dB
				11110 = +28.5dB
				11111 = +30dB

Register 1Ah Right Line Input 1&2 Volume

REGISTER ADDRESS	BIT	LABEL	DEFAULT	DESCRIPTION
R27 (1Bh) Right Line Input 3&4	8	IN2_VU	0	Input PGA Volume Update Writing a 1 to this bit will cause IN2L and IN2R input PGA volumes to be updated simultaneously
Volume	7	IN2R_MUTE	1	IN2R PGA Mute 0 = Disable Mute 1 = Enable Mute
	6	IN2R_ZC	0	IN2R PGA Zero Cross Detector 0 = Change gain immediately 1 = Change gain on zero cross only
	4:0	IN2R_VOL [4:0]	0_1011	IN2R Volume 00000 = -16.5dB 00001 = -15dB 11110 = +28.5dB 11111 = +30dB

Register 1Bh Right Line Input 3&4 Volume

REGISTER ADDRESS	BIT	LABEL	DEFAULT	DESCRIPTION
R28 (1Ch) Left Output Volume	8	HPOUT1_VU	0	Headphone Output PGA Volume Update Writing a 1 to this bit will update HPOUT1LVOL and HPOUT1RVOL volumes simultaneously.
	7	HPOUT1L_ZC	0	HPOUT1LVOL (Left Headphone Output PGA) Zero Cross Enable 0 = Zero cross disabled 1 = Zero cross enabled
	6	HPOUT1L_MUT E_N	1	HPOUT1LVOL (Left Headphone Output PGA) Mute 0 = Mute

REGISTER ADDRESS	BIT	LABEL	DEFAULT	DESCRIPTION
				1 = Un-mute
	5:0	HPOUT1L_VOL [5:0]	10_1101	HPOUT1LVOL (Left Headphone Output PGA) Volume 00 0000 = -57dB 00 0001 = -56dB 11 1110 = +5dB 11 1111 = +6dB

Register 1Ch Left Output Volume

REGISTER ADDRESS	BIT	LABEL	DEFAULT	DESCRIPTION
R29 (1Dh) Right Output Volume	8	HPOUT1_VU	0	Headphone Output PGA Volume Update Writing a 1 to this bit will update HPOUT1LVOL and HPOUT1RVOL volumes simultaneously.
	7	HPOUT1R_ZC	0	HPOUT1RVOL (Right Headphone Output PGA) Zero Cross Enable 0 = Zero cross disabled 1 = Zero cross enabled
	6	HPOUT1R_MUT E_N	1	HPOUT1RVOL (Right Headphone Output PGA) Mute 0 = Mute 1 = Un-mute
	5:0	HPOUT1R_VOL [5:0]	10_1101	HPOUT1RVOL (Right Headphone Output PGA) Volume 00 0000 = -57dB 00 0001 = -56dB 11 1110 = +5dB 11 1111 = +6dB

Register 1Dh Right Output Volume

REGISTER ADDRESS	BIT	LABEL	DEFAULT	DESCRIPTION
R30 (1Eh)	6	LINEOUT1N_M	1	LINEOUT1N Line Output Mute
Line Outputs		UTE		0 = Un-mute
Volume				1 = Mute
	5	LINEOUT1P_M	1	LINEOUT1P Line Output Mute
		UTE		0 = Un-mute
				1 = Mute
	4	LINEOUT1_VOL	0	LINEOUT1 Line Output Volume
				0 = 0dB
				1 = -6dB
				Applies to both LINEOUT1N and LINEOUT1P
	2	LINEOUT2N_M	1	LINEOUT2N Line Output Mute
		UTE		0 = Un-mute
				1 = Mute
	1	LINEOUT2P_M	1	LINEOUT2P Line Output Mute
		UTE		0 = Un-mute
				1 = Mute
	0	LINEOUT2_VOL	0	LINEOUT2 Line Output Volume
				0 = 0dB
				1 = -6dB

REGISTER ADDRESS	BIT	LABEL	DEFAULT	DESCRIPTION
				Applies to both LINEOUT2N and LINEOUT2P

Register 1Eh Line Outputs Volume

REGISTER ADDRESS	BIT	LABEL	DEFAULT	DESCRIPTION
R31 (1Fh) HPOUT2 Volume	5	HPOUT2_MUTE	1	HPOUT2 (Earpiece Driver) Mute 0 = Un-mute 1 = Mute
	4	HPOUT2_VOL	0	HPOUT2 (Earpiece Driver) Volume 0 = 0dB 1 = -6dB

Register 1Fh HPOUT2 Volume

REGISTER ADDRESS	BIT	LABEL	DEFAULT	DESCRIPTION
R32 (20h) Left OPGA Volume	8	MIXOUT_VU	0	Mixer Output PGA Volume Update Writing a 1 to this bit will update MIXOUTLVOL and MIXOUTRVOL volumes simultaneously.
	7	MIXOUTL_ZC	0	MIXOUTLVOL (Left Mixer Output PGA) Zero Cross Enable 0 = Zero cross disabled 1 = Zero cross enabled
	6	MIXOUTL_MUT E_N	1	MIXOUTLVOL (Left Mixer Output PGA) Mute 0 = Mute 1 = Un-mute
	5:0	MIXOUTL_VOL [5:0]	11_1001	MIXOUTLVOL (Left Mixer Output PGA) Volume 00 0000 = -57dB 00 0001 = -56dB 11 1110 = +5dB 11 1111 = +6dB

Register 20h Left OPGA Volume

REGISTER ADDRESS	BIT	LABEL	DEFAULT	DESCRIPTION
R33 (21h) Right OPGA Volume	8	MIXOUT_VU	0	Mixer Output PGA Volume Update Writing a 1 to this bit will update MIXOUTLVOL and MIXOUTRVOL volumes simultaneously.
	7	MIXOUTR_ZC	0	MIXOUTRVOL (Right Mixer Output PGA) Zero Cross Enable 0 = Zero cross disabled 1 = Zero cross enabled
	6	MIXOUTR_MUT E_N	1	MIXOUTLVOL (Right Mixer Output PGA) Mute 0 = Mute 1 = Un-mute
	5:0	MIXOUTR_VOL [5:0]	11_1001	MIXOUTRVOL (Right Mixer Output PGA) Volume 00 0000 = -57dB 00 0001 = -56dB 11 1110 = +5dB

REGISTER ADDRESS	LABEL	DEFAULT	DESCRIPTION
			11 1111 = +6dB

Register 21h Right OPGA Volume

REGISTER ADDRESS	BIT	LABEL	DEFAULT	DESCRIPTION
R34 (22h) SPKMIXL Attenuation	5	MIXINL_SPKMI XL_VOL	0	MIXINL (Left ADC bypass) to SPKMIXL Fine Volume Control 0 = 0dB 1 = -3dB
	4	IN1LP_SPKMIX L_VOL	0	IN1LP to SPKMIXL Fine Volume Control 0 = 0dB 1 = -3dB
	3	MIXOUTL_SPK MIXL_VOL	0	Left Mixer Output to SPKMIXL Fine Volume Control 0 = 0dB 1 = -3dB
	2	DACL_SPKMIX L_VOL	0	Left DAC to SPKMIXL Fine Volume Control 0 = 0dB 1 = -3dB
	1:0	SPKMIXL_VOL [1:0]	11	Left Speaker Mixer Volume Control 00 = 0dB 01 = -6dB 10 = -12dB 11 = mute

Register 22h SPKMIXL Attenuation

REGISTER ADDRESS	BIT	LABEL	DEFAULT	DESCRIPTION
R35 (23h) SPKMIXR Attenuation	8	SPKOUT_CLAS SAB_MODE	0	Speaker Class AB Mode Enable 0 = Class D mode 1 = Class AB mode
	5	MIXINR_SPKMI XR_VOL	0	MIXINR (Right ADC bypass) to SPKMIXR Fine Volume Control 0 = 0dB 1 = -3dB
	4	IN1RP_SPKMIX R_VOL	0	IN1RP to SPKMIXR Fine Volume Control 0 = 0dB 1 = -3dB
	3	MIXOUTR_SPK MIXR_VOL	0	Right Mixer Output to SPKMIXR Fine Volume Control 0 = 0dB 1 = -3dB
	2	DACR_SPKMIX R_VOL	0	Right DAC to SPKMIXR Fine Volume Control 0 = 0dB 1 = -3dB
	1:0	SPKMIXR_VOL [1:0]	11	Right Speaker Mixer Volume Control 00 = 0dB 01 = -6dB 10 = -12dB 11 = mute

Register 23h SPKMIXR Attenuation

REGISTER ADDRESS	BIT	LABEL	DEFAULT	DESCRIPTION
R36 (24h) SPKOUT Mixers	5	IN2LP_TO_SPK OUTL	0	Direct Voice (Differential Input, VRXN/VRXP) to Left Speaker Mute 0 = Mute 1 = Un-mute
	4	SPKMIXL_TO_S PKOUTL	1	SPKMIXL Left Speaker Mixer to Left Speaker Mute 0 = Mute 1 = Un-mute
	3	SPKMIXR_TO_ SPKOUTL	0	SPKMIXR Right Speaker Mixer to Left Speaker Mute 0 = Mute 1 = Un-mute
	2	IN2LP_TO_SPK OUTR	0	Direct Voice (Differential Input, VRXN/VRXP) to Right Speaker Mute 0 = Mute 1 = Un-mute
	1	SPKMIXL_TO_S PKOUTR	0	SPKMIXL Left Speaker Mixer to Right Speaker Mute 0 = Mute 1 = Un-mute
	0	SPKMIXR_TO_ SPKOUTR	1	SPKMIXR Right Speaker Mixer to Right Speaker Mute 0 = Mute 1 = Un-mute

Register 24h SPKOUT Mixers

REGISTER	BIT	LABEL	DEFAULT	DESCRIPTION
ADDRESS				
R37 (25h)	5:3	SPKOUTL_BOO	000	Left Speaker Gain Boost
ClassD3		ST [2:0]		000 = 1.00x boost (+0dB)
				001 = 1.19x boost (+1.5dB)
				010 = 1.41x boost (+3.0dB)
				011 = 1.68x boost (+4.5dB)
				100 = 2.00x boost (+6.0dB)
				101 = 2.37x boost (+7.5dB)
				110 = 2.81x boost (+9.0dB)
				111 = 3.98x boost (+12.0dB)
	2:0	SPKOUTR_BO	000	Right Speaker Gain Boost
		OST [2:0]		000 = 1.00x boost (+0dB)
				001 = 1.19x boost (+1.5dB)
				010 = 1.41x boost (+3.0dB)
				011 = 1.68x boost (+4.5dB)
				100 = 2.00x boost (+6.0dB)
				101 = 2.37x boost (+7.5dB)
				110 = 2.81x boost (+9.0dB)
				111 = 3.98x boost (+12.0dB)

Register 25h ClassD3

REGISTER ADDRESS	BIT	LABEL	DEFAULT	DESCRIPTION
R38 (26h) Speaker Volume Left	8	SPKOUT_VU	0	Speaker Output PGA Volume Update Writing a 1 to this bit will update SPKLVOL and SPKRVOL volumes simultaneously.

REGISTER	BIT	LABEL	DEFAULT	DESCRIPTION
ADDRESS				
	7	SPKOUTL_ZC	0	SPKLVOL (Left Speaker Output PGA) Zero Cross Enable
				0 = Zero cross disabled
				1 = Zero cross enabled
	6	SPKOUTL_MUT	1	SPKLVOL (Left Speaker Output PGA) Mute
		E_N		0 = Mute
				1 = Un-mute
	5:0	SPKOUTL_VOL	11_1001	SPKLVOL (Left Speaker Output PGA) Volume
		[5:0]		00 0000 = -57dB
				00 0001 = -56dB
				11 1110 = +5dB
				11 1111 = +6dB

Register 26h Speaker Volume Left

REGISTER	BIT	LABEL	DEFAULT	DESCRIPTION
ADDRESS				
R39 (27h)	8	SPKOUT_VU	0	Speaker Output PGA Volume Update
Speaker				Writing a 1 to this bit will update SPKLVOL and SPKRVOL
Volume Right				volumes simultaneously.
	7	SPKOUTR_ZC	0	SPKRVOL (Right Speaker Output PGA) Zero Cross Enable
				0 = Zero cross disabled
				1 = Zero cross enabled
	6	SPKOUTR_MUT	1	SPKRVOL (Right Speaker Output PGA) Mute
		E_N		0 = Mute
				1 = Un-mute
	5:0	SPKOUTR_VOL	11_1001	SPKRVOL (Right Speaker Output PGA) Volume
		[5:0]		00 0000 = -57dB
				00 0001 = -56dB
				11 1110 = +5dB
				11 1111 = +6dB

Register 27h Speaker Volume Right

REGISTER ADDRESS	BIT	LABEL	DEFAULT	DESCRIPTION
R40 (28h)	7	IN2LP_TO_IN2L	0	IN2L PGA Non-Inverting Input Select
Input Mixer2				0 = Connected to VMID
				1 = Connected to IN2LP
				Note that VMID_BUF_ENA must be set when using IN2L connected to VMID.
	6	IN2LN_TO_IN2L	0	IN2L PGA Inverting Input Select
				0 = Not connected
				1 = Connected to IN2LN
	5	IN1LP_TO_IN1L	0	IN1L PGA Non-Inverting Input Select
				0 = Connected to VMID
				1 = Connected to IN1LP
				Note that VMID_BUF_ENA must be set when using IN2L connected to VMID.
	4	IN1LN_TO_IN1L	0	IN1L PGA Inverting Input Select
				0 = Not connected

REGISTER	BIT	LABEL	DEFAULT	DESCRIPTION
ADDRESS				
				1 = Connected to IN1LN
	3	IN2RP_TO_IN2	0	IN2R PGA Non-Inverting Input Select
		R		0 = Connected to VMID
				1 = Connected to IN2RP
				Note that VMID_BUF_ENA must be set when using IN2L connected to VMID.
	2	IN2RN_TO_IN2	0	IN2R PGA Inverting Input Select
		R		0 = Not connected
				1 = Connected to IN2RN
	1	IN1RP_TO_IN1	0	IN1R PGA Non-Inverting Input Select
		R		0 = Connected to VMID
				1 = Connected to IN1RP
				Note that VMID_BUF_ENA must be set when using IN2L connected to VMID.
	0	IN1RN_TO_IN1	0	IN1R PGA Inverting Input Select
		R		0 = Not connected
				1 = Connected to IN1RN

Register 28h Input Mixer2

REGISTER ADDRESS	BIT	LABEL	DEFAULT	DESCRIPTION
R41 (29h)	8	IN2L_TO_MIXIN	0	IN2L PGA Output to MIXINL Mute
Input Mixer3		L		0 = Mute
				1 = Un-Mute
	7	IN2L_MIXINL_V	0	IN2L PGA Output to MIXINL Gain
		OL		0 = 0dB
				1 = +30dB
	5	IN1L_TO_MIXIN	0	IN1L PGA Output to MIXINL Mute
		L		0 = Mute
				1 = Un-Mute
	4	IN1L_MIXINL_V	0	IN1L PGA Output to MIXINL Gain
		OL		0 = 0dB
				1 = +30dB
	2:0	MIXOUTL_MIXI	000	Record Path MIXOUTL to MIXINL Gain and Mute
		NL_VOL [2:0]		000 = Mute
				001 = -12dB
				010 = -9dB
				011 = -6dB
				100 = -3dB
				101 = 0dB
				110 = +3dB
				111 = +6dB

Register 29h Input Mixer3

REGISTER ADDRESS	BIT	LABEL	DEFAULT	DESCRIPTION
R42 (2Ah) Input Mixer4	8	IN2R_TO_MIXIN R	0	IN2R PGA Output to MIXINR Mute 0 = Mute 1 = Un-Mute
	7	IN2R_MIXINR_	0	IN2R PGA Output to MIXINR Gain

REGISTER	BIT	LABEL	DEFAULT	DESCRIPTION
ADDRESS				
		VOL		0 = 0dB
				1 = +30dB
	5	IN1R_TO_MIXIN	0	IN1R PGA Output to MIXINR Mute
		R		0 = Mute
				1 = Un-Mute
	4	IN1R_MIXINR_	0	IN1R PGA Output to MIXINR Gain
		VOL		0 = 0dB
				1 = +30dB
	2:0	MIXOUTR_MIXI	000	Record Path MIXOUTR to MIXINR Gain and Mute
		NR_VOL [2:0]		000 = Mute
				001 = -12dB
				010 = -9dB
				011 = -6dB
				100 = -3dB
				101 = 0dB
				110 = +3dB
				111 = +6dB

Register 2Ah Input Mixer4

REGISTER	BIT	LABEL	DEFAULT	DESCRIPTION
ADDRESS				
R43 (2Bh)	8:6	IN1LP_MIXINL_	000	IN1LP Pin (PGA Bypass) to MIXINL Gain and Mute
Input Mixer5		VOL [2:0]		000 = Mute
				001 = -12dB
				010 = -9dB
				011 = -6dB
				100 = -3dB
				101 = 0dB
				110 = +3dB
				111 = +6dB
	2:0	IN2LP_MIXINL_	000	RXVOICE (VRXN/VRXP) Differential Input to MIXINL Gain
		VOL [2:0]		and Mute
				000 = Mute
				001 = -12dB
				010 = -9dB
				011 = -6dB
				100 = -3dB
				101 = 0dB
				110 = +3dB
				111 = +6dB

Register 2Bh Input Mixer5

REGISTER ADDRESS	BIT	LABEL	DEFAULT	DESCRIPTION
R44 (2Ch) Input Mixer6	8:6	IN1RP_MIXINR _VOL [2:0]	000	IN1RP Pin (PGA Bypass) to MIXINR Gain and Mute 000 = Mute 001 = -12dB 010 = -9dB 011 = -6dB 100 = -3dB

REGISTER	BIT	LABEL	DEFAULT	DESCRIPTION
ADDRESS				
				101 = 0dB
				110 = +3dB
				111 = +6dB
	2:0	IN2LP_MIXINR_	000	RXVOICE (VRXN/VRXP) Differential Input to MIXINR Gain
		VOL [2:0]		and Mute
				000 = Mute
				001 = -12dB
				010 = -9dB
				011 = -6dB
				100 = -3dB
				101 = 0dB
				110 = +3dB
				111 = +6dB

Register 2Ch Input Mixer6

REGISTER ADDRESS	BIT	LABEL	DEFAULT	DESCRIPTION
R45 (2Dh) Output Mixer1	8	DACL_TO_HPO UT1L	0	HPOUT1LVOL (Left Headphone Output PGA) Input Select 0 = MIXOUTL 1 = DACL
	7	MIXINR_TO_MI XOUTL	0	MIXINR Output (Right ADC bypass) to MIXOUTL Mute 0 = Mute 1 = Un-mute
	6	MIXINL_TO_MI XOUTL	0	MIXINL Output (Left ADC bypass) to MIXOUTL Mute 0 = Mute 1 = Un-mute
	5	IN2RN_TO_MIX OUTL	0	IN2RN to MIXOUTL Mute 0 = Mute 1 = Un-mute
	4	IN2LN_TO_MIX OUTL	0	IN2LN to MIXOUTL Mute 0 = Mute 1 = Un-mute
	3	IN1R_TO_MIXO UTL	0	IN1R PGA Output to MIXOUTL Mute 0 = Mute 1 = Un-mute
	2	IN1L_TO_MIXO UTL	0	IN1L PGA Output to MIXOUTL Mute 0 = Mute 1 = Un-mute
	1	IN2LP_TO_MIX OUTL	0	IN2LP to MIXOUTL Mute 0 = Mute 1 = Un-mute
	0	DACL_TO_MIX OUTL	0	Left DAC to MIXOUTL Mute 0 = Mute 1 = Un-mute

Register 2Dh Output Mixer1

REGISTER ADDRESS	BIT	LABEL	DEFAULT	DESCRIPTION
R46 (2Eh) Output	8	DACR_TO_HPO UT1R	0	HPOUT1RVOL (Right Headphone Output PGA) Input Select

REGISTER ADDRESS	BIT	LABEL	DEFAULT	DESCRIPTION
Mixer2				0 = MIXOUTR 1 = DACR
	7	MIXINL_TO_MI XOUTR	0	MIXINL Output (Left ADC bypass) to MIXOUTR Mute 0 = Mute
	6	MIXINR_TO_MI XOUTR	0	1 = Un-mute MIXINR Output (Right ADC bypass) to MIXOUTR Mute 0 = Mute 1 = Un-mute
	5	IN2LN_TO_MIX OUTR	0	IN2LN to MIXOUTR Mute 0 = Mute 1 = Un-mute
	4	IN2RN_TO_MIX OUTR	0	IN2RN to MIXOUTR Mute 0 = Mute 1 = Un-mute
	3	IN1L_TO_MIXO UTR	0	IN1L PGA Output to MIXOUTR Mute 0 = Mute 1 = Un-mute
	2	IN1R_TO_MIXO UTR	0	IN1R PGA Output to MIXOUTR Mute 0 = Mute 1 = Un-mute
	1	IN2RP_TO_MIX OUTR	0	IN2RP to MIXOUTR Mute 0 = Mute 1 = Un-mute
	0	DACR_TO_MIX OUTR	0	Right DAC to MIXOUTR Mute 0 = Mute 1 = Un-mute

Register 2Eh Output Mixer2

REGISTER ADDRESS	BIT	LABEL	DEFAULT	DESCRIPTION
R47 (2Fh) Output Mixer3	11:9	IN2LP_MIXOUT L_VOL [2:0]	000	IN2LP to MIXOUTL Volume 0dB to -21dB in 3dB steps 000 = 0dB 001 = -3dB 110 = -18dB 111 = -21dB
	8:6	IN2LN_MIXOUT L_VOL [2:0]	000	IN2LN to MIXOUTL Volume 0dB to -21dB in 3dB steps 000 = 0dB 001 = -3dB 110 = -18dB 111 = -21dB
	5:3	IN1R_MIXOUTL _VOL [2:0]	000	IN1R PGA Output to MIXOUTL Volume 0dB to -21dB in 3dB steps 000 = 0dB 001 = -3dB 110 = -18dB 111 = -21dB

REGISTER	BIT	LABEL	DEFAULT	DESCRIPTION
ADDRESS				
	2:0	IN1L_MIXOUTL	000	IN1L PGA Output to MIXOUTL Volume
		_VOL [2:0]		0dB to -21dB in 3dB steps
				000 = 0dB
				001 = -3dB
				110 = -18dB
				111 = -21dB

Register 2Fh Output Mixer3

REGISTER ADDRESS	BIT	LABEL	DEFAULT	DESCRIPTION
R48 (30h) Output Mixer4	11:9	IN2RP_MIXOUT R_VOL [2:0]	000	IN2RP to MIXOUTR Volume 0dB to -21dB in 3dB steps 000 = 0dB 001 = -3dB 110 = -18dB 111 = -21dB
	8:6	IN2RN_MIXOUT R_VOL [2:0]	000	IN2RN to MIXOUTR Volume 0dB to -21dB in 3dB steps 000 = 0dB 001 = -3dB 110 = -18dB 111 = -21dB
	5:3	IN1L_MIXOUTR _VOL [2:0]	000	IN1L PGA Output to MIXOUTR Volume 0dB to -21dB in 3dB steps 000 = 0dB 001 = -3dB 110 = -18dB 111 = -21dB
	2:0	IN1R_MIXOUTR _VOL [2:0]	000	IN1R PGA Output to MIXOUTR Volume 0dB to -21dB in 3dB steps 000 = 0dB 001 = -3dB 110 = -18dB 111 = -21dB

Register 30h Output Mixer4

REGISTER ADDRESS	BIT	LABEL	DEFAULT	DESCRIPTION
R49 (31h) Output Mixer5	11:9	DACL_MIXOUT L_VOL [2:0]	000	Left DAC to MIXOUTL Volume 0dB to -21dB in 3dB steps 000 = 0dB 001 = -3dB 110 = -18dB 111 = -21dB

REGISTER ADDRESS	BIT	LABEL	DEFAULT	DESCRIPTION
	8:6	IN2RN_MIXOUT L_VOL [2:0]	000	IN2RN to MIXOUTL Volume OdB to -21dB in 3dB steps 000 = 0dB 001 = -3dB 110 = -18dB 111 = -21dB
	5:3	MIXINR_MIXOU TL_VOL [2:0]	000	MIXINR Output (Right ADC bypass) to MIXOUTL Volume 0dB to -21dB in 3dB steps 000 = 0dB 001 = -3dB 110 = -18dB 111 = -21dB
	2:0	MIXINL_MIXOU TL_VOL [2:0]	000	MIXINL Output (Left ADC bypass) to MIXOUTL Volume 0dB to -21dB in 3dB steps 000 = 0dB 001 = -3dB 110 = -18dB 111 = -21dB

Register 31h Output Mixer5

REGISTER	BIT	LABEL	DEFAULT	DESCRIPTION
ADDRESS				
R50 (32h)	11:9	DACR_MIXOUT	000	Right DAC to MIXOUTR Volume
Output Mixer6		R_VOL [2:0]		0dB to -21dB in 3dB steps
WIXERO				000 = 0dB
				001 = -3dB
				110 = -18dB
	8:6	IN2LN_MIXOUT R_VOL [2:0]	000	IN2LN to MIXOUTR Volume
				0dB to -21dB in 3dB steps 000 = 0dB
				000 = 00B 001 = -3dB
				-50D
				 110 = -18dB
				111 = -21dB
	5:3	MIXINL_MIXOU	000	MIXINL Output (Left ADC bypass) to MIXOUTR Volume
		TR_VOL [2:0]		0dB to -21dB in 3dB steps
				000 = 0dB
				001 = -3dB
				110 = -18dB
				111 = -21dB
	2:0	MIXINR_MIXOU	000	MIXINR Output (Right ADC bypass) to MIXOUTR Volume
		TR_VOL [2:0]		0dB to -21dB in 3dB steps
				000 = 0dB
				001 = -3dB

REGISTER ADDRESS	BIT	LABEL	DEFAULT	DESCRIPTION
				110 = -18dB 111 = -21dB

Register 32h Output Mixer6

REGISTER ADDRESS	BIT	LABEL	DEFAULT	DESCRIPTION
R51 (33h) HPOUT2 Mixer	5	IN2LRP_TO_HP OUT2	0	Direct Voice (Differential Input, VRXN/VRXP) to Earpiece Driver 0 = Mute 1 = Un-mute
	4	MIXOUTLVOL_ TO_HPOUT2	0	MIXOUTLVOL (Left Output Mixer PGA) to Earpiece Driver 0 = Mute 1 = Un-mute
	3	MIXOUTRVOL_ TO_HPOUT2	0	MIXOUTRVOL (Right Output Mixer PGA) to Earpiece Driver 0 = Mute 1 = Un-mute

Register 33h HPOUT2 Mixer

REGISTER ADDRESS	BIT	LABEL	DEFAULT	DESCRIPTION
R52 (34h) Line Mixer1	6	MIXOUTL_TO_L INEOUT1N	0	MIXOUTL to Single-Ended Line Output on LINEOUT1N 0 = Mute 1 = Un-mute (LINEOUT1_MODE = 1)
	5	MIXOUTR_TO_ LINEOUT1N	0	MIXOUTR to Single-Ended Line Output on LINEOUT1N 0 = Mute 1 = Un-mute (LINEOUT1_MODE = 1)
	4	LINEOUT1_MO DE	0	LINEOUT1 Mode Select 0 = Differential 1 = Single-Ended
	2	IN1R_TO_LINE OUT1P	0	IN1R Input PGA to Differential Line Output on LINEOUT1 0 = Mute 1 = Un-mute (LINEOUT1_MODE = 0)
	1	IN1L_TO_LINE OUT1P	0	IN1L Input PGA to Differential Line Output on LINEOUT1 0 = Mute 1 = Un-mute (LINEOUT1_MODE = 0)
	0	MIXOUTL_TO_L INEOUT1P	0	Differential Mode (LINEOUT1_MODE = 0): MIXOUTL to Differential Output on LINEOUT1 0 = Mute 1 = Un-mute Single Ended Mode (LINEOUT1_MODE = 1): MIXOUTL to Single-Ended Line Output on LINEOUT1P 0 = Mute 1 = Un-mute

Register 34h Line Mixer1

REGISTER ADDRESS	BIT	LABEL	DEFAULT	DESCRIPTION
R53 (35h) Line Mixer2	6	MIXOUTR_TO_ LINEOUT2N	0	MIXOUTR to Single-Ended Line Output on LINEOUT2N 0 = Mute 1 = Un-mute (LINEOUT2_MODE = 1)
	5	MIXOUTL_TO_L INEOUT2N	0	MIXOUTL to Single-Ended Line Output on LINEOUT2N 0 = Mute 1 = Un-mute (LINEOUT2_MODE = 1)
	4	LINEOUT2_MO DE	0	LINEOUT2 Mode Select 0 = Differential 1 = Single-Ended
	2	IN1L_TO_LINE OUT2P	0	IN1L Input PGA to Differential Line Output on LINEOUT2 0 = Mute 1 = Un-mute (LINEOUT2_MODE = 0)
	1	IN1R_TO_LINE OUT2P	0	IN1R Input PGA to Differential Line Output on LINEOUT2 0 = Mute 1 = Un-mute (LINEOUT2_MODE = 0)
	0	MIXOUTR_TO_ LINEOUT2P	0	Differential Mode (LINEOUT2_MODE = 0): MIXOUTR to Differential Output on LINEOUT2 0 = Mute 1 = Un-mute Single-Ended Mode (LINEOUT2_MODE = 0): MIXOUTR to Single-Ended Line Output on LINEOUT2P 0 = Mute 1 = Un-mute

Register 35h Line Mixer2

REGISTER ADDRESS	BIT	LABEL	DEFAULT	DESCRIPTION
R54 (36h) Speaker Mixer	8	SPKAB_REF_S EL	0	Selects Reference for Speaker in Class AB mode 0 = SPKVDD/2 1 = VMID
	7	MIXINL_TO_SP KMIXL	0	MIXINL (Left ADC bypass) to SPKMIXL Mute 0 = Mute 1 = Un-mute
	6	MIXINR_TO_SP KMIXR	0	MIXINR (Right ADC bypass) to SPKMIXR Mute 0 = Mute 1 = Un-mute
	5	IN1LP_TO_SPK MIXL	0	IN1LP to SPKMIXL Mute 0 = Mute 1 = Un-mute
	4	IN1RP_TO_SPK MIXR	0	IN1RP to SPKMIXR Mute 0 = Mute 1 = Un-mute
	3	MIXOUTL_TO_ SPKMIXL	0	Left Mixer Output to SPKMIXL Mute 0 = Mute 1 = Un-mute

REGISTER	BIT	LABEL	DEFAULT	DESCRIPTION
ADDRESS				
	2	MIXOUTR_TO_	0	Right Mixer Output to SPKMIXR Mute
		SPKMIXR		0 = Mute
				1 = Un-mute
	1	DACL_TO_SPK	0	Left DAC to SPKMIXL Mute
		MIXL		0 = Mute
				1 = Un-mute
	0	DACR_TO_SPK	0	Right DAC to SPKMIXR Mute
		MIXR		0 = Mute
				1 = Un-mute

Register 36h Speaker Mixer

REGISTER ADDRESS	BIT	LABEL	DEFAULT	DESCRIPTION
R55 (37h) Additional Control	7	LINEOUT1_FB	0	Enable ground loop noise feedback on LINEOUT1 0 = Disabled 1 = Enabled
	6	LINEOUT2_FB	0	Enable ground loop noise feedback on LINEOUT2 0 = Disabled 1 = Enabled
	0	VROI	0	Buffered VMID to Analogue Line Output Resistance (Disabled Outputs) 0 = 20kohm from buffered VMID to output 1 = 1000ohm from buffered VMID to output

Register 37h Additional Control

REGISTER ADDRESS	BIT	LABEL	DEFAULT	DESCRIPTION
R56 (38h) AntiPOP1	7	LINEOUT_VMID _BUF_ENA	0	Enables VMID reference for line outputs in single-ended mode 0 = Disabled 1 = Enabled
	6	HPOUT2_IN_EN A	0	HPOUT2MIX Mixer and Input Stage Enable 0 = Disabled 1 = Enabled
	5	LINEOUT1_DIS CH	0	Discharges LINEOUT1P and LINEOUT1N outputs via approx 4k□ resistor 0 = Not active 1 = Actively discharging LINEOUT1P and LINEOUT1N
	4	LINEOUT2_DIS CH	0	Discharges LINEOUT2P and LINEOUT2N outputs via approx 4k□ resistor 0 = Not active 1 = Actively discharging LINEOUT2P and LINEOUT2N

Register 38h AntiPOP1

REGISTER ADDRESS	BIT	LABEL	DEFAULT	DESCRIPTION
R57 (39h) AntiPOP2	6:5	VMID_RAMP [1:0]	00	VMID soft start enable / slew rate control 00 = Normal / Slow start 01 = Normal / Fast start 10 = Soft / Slow start 11 = Soft / Fast start If VMID_RAMP = 1X is selected for VMID start-up or shut- down, then the soft-start circuit must be reset by setting VMID_RAMP=00 after VMID is disabled, before VMID is re- enabled. VMID is disabled / enabled using the VMID_SEL register.
	3	VMID_BUF_EN A	0	VMID Buffer Enable 0 = Disabled 1 = Enabled
	2	STARTUP_BIAS _ENA	0	Enables the Start-Up bias current generator 0 = Disabled 1 = Enabled
	1	BIAS_SRC	0	Selects the bias current source 0 = Normal bias 1 = Start-Up bias
	0	VMID_DISCH	0	Connects VMID to ground 0 = Disabled 1 = Enabled

Register 39h AntiPOP2

REGISTER ADDRESS	BIT	LABEL	DEFAULT	DESCRIPTION
R58 (3Ah)	7:6	JD_SCTHR [1:0]	00	Jack Detect (MICBIAS) Short Circuit threshold
MICBIAS				00 = 300uA
				01 = 600uA
				10 = 1200uA
				11 = 2400uA
				These values are for AVDD1=3.0V and scale proportionally with AVDD1.
	5:3	JD_THR [2:0]	000	Jack Detect (MICBIAS) Current Detect threshold
				00 = 150uA
				01 = 300uA
				10 = 600uA
				11 = 1200uA
				These values are for AVDD1=3.0V and scale proportionally with AVDD1.
	2	JD_ENA	0	Jack Detect (MICBIAS) function enable
				0 = disabled
				1 = enabled
	1	MICB2_LVL	0	Microphone Bias 2 Voltage Control
				0 = 0.9 * AVDD1
				1 = 0.65 * AVDD1
	0	MICB1_LVL	0	Microphone Bias 1 Voltage Control
				0 = 0.9 * AVDD1
				1 = 0.65 * AVDD1

Register 3Ah MICBIAS

REGISTER	BIT	LABEL	DEFAULT	DESCRIPTION
ADDRESS				
R60 (3Ch)	2	FLL_FRAC	0	Fractional enable
FLL Control 1				0 = Integer Mode
				1 = Fractional Mode
				1 recommended in all cases
	1	FLL_OSC_ENA	0	FLL Oscillator Enable
				0 = FLL disabled
				1 = FLL enabled
				(Note that this field is required for free-running FLL modes only)
	0	FLL_ENA	0	FLL Enable
				0 = FLL disabled
				1 = FLL enabled

Register 3Ch FLL Control 1

REGISTER ADDRESS	BIT	LABEL	DEFAULT	DESCRIPTION
R61 (3Dh) FLL Control 2	10:8	FLL_OUTDIV [2:0]	000	FOUT clock divider 000 = 2 001 = 4 010 = 8 011 = 16 100 = 32 101 = 64 110 = 128 111 = 256 (FOUT = FVCO / FLL_OUTDIV)
	2:0	FLL_FRATIO [2:0]	000	FVCO clock divider 000 = 1 001 = 2 010 = 4 011 = 8 1XX = 16

Register 3Dh FLL Control 2

REGISTER ADDRESS	BIT	LABEL	DEFAULT	DESCRIPTION
R62 (3Eh) FLL Control 3	15:0	FLL_K [15:0]		Fractional multiply for FREF (MSB = 0.5)

Register 3Eh FLL Control 3

REGISTER ADDRESS	BIT	LABEL	DEFAULT	DESCRIPTION
R63 (3Fh) FLL Control 4	14:5	FLL_N [9:0]	01_0111_0 111	Integer multiply for FREF (LSB = 1)

Register 3Fh FLL Control 4

REGISTER	BIT	LABEL	DEFAULT	DESCRIPTION
ADDRESS				
R64 (40h)	12:7	FLL_FRC_NCO	00_0000	Forces the oscillator value
FLL Control 5		_VAL [5:0]		Valid range is 000000 to 111111
				0x19h (011001) = 12MHz approx
				(Note that this field is required for free-running FLL modes only)
	6	FLL_FRC_NCO	0	FLL control select
				0 = controlled by digital loop (default)
				1 = controlled by FLL_FRC_NCO_VAL
				(Note that this field is required for free-running FLL modes only)
	4:3	FLL_CLK_REF_	00	FLL Clock Reference Divider
		DIV [1:0]		00 = MCLK / 1
				01 = MCLK / 2
				10 = MCLK / 4
				11 = MCLK / 8
				MCLK (or other input reference) must be divided down to <=13.5MHz.
				For lower power operation, the reference clock can be divided down further if desired.
	1:0	FLL_CLK_SRC	10	FLL Clock source
		[1:0]		00 = MCLK
				01 = LRCLK
				10 = BCLK
				11 = Reserved

Register 40h FLL Control 5

REGISTER ADDRESS	BIT	LABEL	DEFAULT	DESCRIPTION
R65 (41h) Clocking 3	13:10	CLK_DCS_DIV [3:0]	1000	DC Servo Clock Divider 0000 = CLK_SYS 0001 = CLK_SYS / 1.5 0010 = CLK_SYS / 2 0011 = CLK_SYS / 2.5 0100 = CLK_SYS / 3 0101 = CLK_SYS / 4 0110 = CLK_SYS / 5.5 0111 = CLK_SYS / 6 1000 = CLK_SYS / 8
				Note - this field is ignored and invalid in Automatic Clocking Configuration mode.
	9:7	SAMPLE_RATE [2:0]	101	Selects the Sample Rate (fs) 000 = 8kHz 001 = 11.025kHz, 12kHz 010 = 16kHz 011 = 22.05kHz, 24kHz 100 = 32kHz 101 = 44.1kHz, 48kHz
	4:1	CLK_SYS_RAT E [3:0]	0011	Selects the CLK_SYS / fs ratio 0000 = 64 0001 = 128

REGISTER ADDRESS	BIT	LABEL	DEFAULT	DESCRIPTION
				0010 = 192
				0011 = 256
				0100 = 384
				0101 = 512
				0110 = 768
				0111 = 1024
				1000 = 1408
				1001 = 1536
	0	CLK_DSP_ENA	1	CLK_DSP enable
				0 = disabled
				1 = enabled

Register 41h Clocking 3

REGISTER	BIT	LABEL	DEFAULT	DESCRIPTION
ADDRESS				
R66 (42h)	9	DAC_DIV4	1	DAC Divide-by-4 select
Clocking 4				0 = DAC_DIV
				1 = DAC_DIV / 4
				Note - this field is ignored and invalid in Automatic Clocking Configuration mode.
	6:1	CLK_256K_DIV	10_1111	256kHz Clock Divider
		[5:0]		0d = CLK_SYS
				1d = CLK_SYS / 2
				2d = CLK_SYS / 3
				63d = CLK_SYS / 64
				Note - this field is ignored and invalid in Automatic Clocking Configuration mode.
	0	SR_MODE	1	Selects Clocking Configuration mode
				0 = Automatic
				1 = Manual

Register 42h Clocking 4

REGISTER ADDRESS	BIT	LABEL	DEFAULT	DESCRIPTION
R69 (45h) Bus Control 1	1	CLK_SYS_ENA		CLK_SYS enable 0 = disabled 1 = enabled

Register 45h Bus Control 1

REGISTER ADDRESS	BIT	LABEL	DEFAULT	DESCRIPTION
R70 (46h) Write Sequencer 0	8	WSEQ_ENA	0	Write Sequencer Enable. 0 = Disabled 1 = Enabled
	4:0	WSEQ_WRITE_ INDEX [4:0]	0_0000	Sequence Write Index. This is the memory location to which any updates to R71 and R72 will be copied. 0 to 31 = RAM addresses

Register 46h Write Sequencer 0

REGISTER	BIT	LABEL	DEFAULT	DESCRIPTION
ADDRESS				
R71 (47h) Write Sequencer 1	14:12	WSEQ_DATA_ WIDTH [2:0]	000	Width of the data block written in this sequence step. 000 = 1 bit 001 = 2 bits 010 = 3 bits 011 = 4 bits 100 = 5 bits 101 = 6 bits 110 = 7 bits 111 = 8 bits
	7:0	WSEQ_DATA_S TART [3:0] WSEQ_ADDR	0000	Bit position of the LSB of the data block written in this sequence step. 0000 = Bit 0 1111 = Bit 15 Control Register Address to be written to in this sequence
		[7:0]		step.

Register 47h Write Sequencer 1

REGISTER ADDRESS	BIT	LABEL	DEFAULT	DESCRIPTION
R72 (48h) Write Sequencer 2	14	WSEQ_EOS	0	End of Sequence flag. This bit indicates whether the Control Write Sequencer should stop after executing this step. 0 = Not end of sequence 1 = End of sequence (Stop the sequencer after this step).
	11:8	WSEQ_DELAY [3:0]	0000	Time delay after executing this step. Total time per step (including execution) = 62.5µs × (2^WSEQ_DELAY + 8)
	7:0	WSEQ_DATA [7:0]	0000_0000	Data to be written in this sequence step. When the data width is less than 8 bits, then one or more of the MSBs of WSEQ_DATA are ignored. It is recommended that unused bits be set to 0.

Register 48h Write Sequencer 2

REGISTER ADDRESS	BIT	LABEL	DEFAULT	DESCRIPTION
R73 (49h) Write Sequencer 3	9	WSEQ_ABORT	0	Writing a 1 to this bit aborts the current sequence and returns control of the device back to the serial control interface.
	8	WSEQ_START	0	Writing a 1 to this bit starts the write sequencer at the memory location indicated by the WSEQ_START_INDEX field. The sequence continues until it reaches an "End of sequence" flag. At the end of the sequence, this bit will be reset by the Write Sequencer.
	5:0	WSEQ_START_ INDEX [5:0]	00_0000	Sequence Start Index. This is the memory location of the first command in the selected sequence. 0 to 31 = RAM addresses 32 to 58 = ROM addresses 59 to 63 = Reserved

Register 49h Write Sequencer 3

REGISTER ADDRESS	BIT	LABEL	DEFAULT	DESCRIPTION
R74 (4Ah) Write Sequencer 4	0	WSEQ_BUSY	0	Sequencer Busy flag (Read Only). 0 = Sequencer idle 1 = Sequencer busy Note: it is not possible to write to control registers via the control interface while the Sequencer is Busy.

Register 4Ah Write Sequencer 4

REGISTER ADDRESS	BIT	LABEL	DEFAULT	DESCRIPTION
R75 (4Bh) Write Sequencer 5	5:0	WSEQ_CURRE NT_INDEX [5:0]	00_0000	Sequence Current Index. This is the location of the most recently accessed command in the write sequencer memory.

Register 4Bh Write Sequencer 5

REGISTER ADDRESS	BIT	LABEL	DEFAULT	DESCRIPTION
R76 (4Ch) Charge Pump 1	15	CP_ENA	0	Enable charge-pump digits 0 = disable 1 = enable Note: Default value of R76[14:0] (0x1F25h) must not be changed when enabling/disabling the Charge Pump
	12	Reserved	1	Reserved - do not change
	11	Reserved	1	Reserved - do not change
	10	Reserved	1	Reserved - do not change
	9	Reserved	1	Reserved - do not change
	8	Reserved	1	Reserved - do not change
	5	Reserved	1	Reserved - do not change
	2	Reserved	1	Reserved - do not change
	0	Reserved	1	Reserved - do not change

Register 4Ch Charge Pump 1

REGISTER	BIT	LABEL	DEFAULT	DESCRIPTION
ADDRESS				
R81 (51h) Class W 0	0	CP_DYN_PWR	0	Enable dynamic charge pump power control 0 = charge pump controlled by volume register settings (Class G) 1 = charge pump controlled by real-time audio level (Class W)

Register 51h Class W 0

REGISTER ADDRESS	BIT	LABEL	DEFAULT	DESCRIPTION
R84 (54h) DC Servo 0	13	DCS_TRIG_SIN GLE_1	0	Writing 1 to this bit selects a single DC offset correction for HPOUT1R.
				In readback, a value of 1 indicates that the DC Servo single correction is in progress.
	12	DCS_TRIG_SIN GLE_0	0	Writing 1 to this bit selects a single DC offset correction for HPOUT1L.
				In readback, a value of 1 indicates that the DC Servo single correction is in progress.
	9	DCS_TRIG_SE RIES_1	0	Writing 1 to this bit selects a series of DC offset corrections for HPOUT1R.
				In readback, a value of 1 indicates that the DC Servo DAC Write correction is in progress.
	8	DCS_TRIG_SE RIES_0	0	Writing 1 to this bit selects a series of DC offset corrections for HPOUT1L.
				In readback, a value of 1 indicates that the DC Servo DAC Write correction is in progress.
	5	DCS_TRIG_STA RTUP_1	0	Writing 1 to this bit selects Start-Up DC Servo mode for HPOUT1R.
				In readback, a value of 1 indicates that the DC Servo Start- Up correction is in progress.
	4	DCS_TRIG_STA RTUP_0	0	Writing 1 to this bit selects Start-Up DC Servo mode for HPOUT1L.
				In readback, a value of 1 indicates that the DC Servo Start- Up correction is in progress.
	3	DCS_TRIG_DA C_WR_1	0	Writing 1 to this bit selects DAC Write DC Servo mode for HPOUT1R.
				In readback, a value of 1 indicates that the DC Servo DAC Write correction is in progress.
	2	DCS_TRIG_DA C_WR_0	0	Writing 1 to this bit selects DAC Write DC Servo mode for HPOUT1L.
				In readback, a value of 1 indicates that the DC Servo DAC Write correction is in progress.
	1	DCS_ENA_CHA	0	DC Servo enable for HPOUT1R
		N_1		0 = disabled
				1 = enabled
	0	DCS_ENA_CHA N_0	0	DC Servo enable for HPOUT1L
		N_0		0 = disabled
				1 = enabled

Register 54h DC Servo 0

REGISTER ADDRESS	BIT	LABEL	DEFAULT	DESCRIPTION
R85 (55h) DC Servo 1	11:5	DCS_SERIES_ NO_01 [6:0]	010_1010	Number of DC Servo updates to perform in a series event. 0 = 1 updates 1 = 2 updates 127 = 128 updates
	3:0	DCS_TIMER_P ERIOD_01 [3:0]	1010	Time between periodic updates. Time is calculated as 0.256s x (2^PERIOD) 0000 = Off 0001 = 0.52s 1010 = 266s (4min 26s) 1111 = 8519s (2hr 22s)

Register 55h DC Servo 1

REGISTER ADDRESS	BIT	LABEL	DEFAULT	DESCRIPTION
R87 (57h) DC Servo 3	15:8	DCS_DAC_WR _VAL_1 [7:0]	0000_0000	DC Offset value for HPOUT1Rin DAC Write DC Servo mode. Two's complement format. LSB is 0.25mV. Range is -32mV to +31.75mV
	7:0	DCS_DAC_WR _VAL_0 [7:0]	0000_0000	DC Offset value for HPOUT1Lin DAC Write DC Servo mode. Two's complement format. LSB is 0.25mV. Range is -32mV to +31.75mV

Register 57h DC Servo 3

REGISTER ADDRESS	BIT	LABEL	DEFAULT	DESCRIPTION
R88 (58h) DC Servo Readback 0	9:8	DCS_CAL_COM PLETE [1:0]	00	DC Servo Complete status 0 = DAC Write or Start-Up DC Servo mode not completed. 1 = DAC Write or Start-Up DC Servo mode complete. Bit [1] = HPOUT1R Bit [0] = HPOUT1L
	5:4	DCS_DAC_WR _COMPLETE [1:0]	00	DC Servo DAC Write status 0 = DAC Write DC Servo mode not completed. 1 = DAC Write DC Servo mode complete. Bit [1] = HPOUT1R Bit [0] = HPOUT1L
	1:0	DCS_STARTUP _COMPLETE [1:0]	00	DC Servo Start-Up status 0 = Start-Up DC Servo mode not completed. 1 = Start-Up DC Servo mode complete. Bit [1] = HPOUT1R Bit [0] = HPOUT1L

Register 58h DC Servo Readback 0

REGISTER ADDRESS	BIT	LABEL	DEFAULT	DESCRIPTION
R89 (59h) DC Servo Readback 1	7:0	DCS_INTEG_C HAN_1 [7:0]	0000_0000	Readback value for HPOUT1R. Two's complement format. LSB is 0.25mV. Range is -32mV to +31.75mV

Register 59h DC Servo Readback 1

REGISTER ADDRESS	BIT	LABEL	DEFAULT	DESCRIPTION
R90 (5Ah) DC Servo Readback 2	7:0	DCS_INTEG_C HAN_0 [7:0]	0000_0000	Readback value for HPOUT1L. Two's complement format. LSB is 0.25mV. Range is -32mV to +31.75mV

REGISTER ADDRESS	BIT	LABEL	DEFAULT	DESCRIPTION
R96 (60h) Analogue HP 0	8	HPOUT1_AUTO _PU	1	Enables automatic power-up of HPOUT1 by monitoring HPOUT1L_ENA and HPOUT1R_ENA 0 = Disabled
				1 = Enabled
	7	HPOUT1L_RMV	0	Removes HPOUT1L short
		_SHORT		0 = HPOUT1L short enabled
				1 = HPOUT1L short removed
				For normal operation, this bit should be set as the final step of the HPOUT1L Enable sequence.
	6	HPOUT1L_OUT	0	Enables HPOUT1L output stage
		Р		0 = Disabled
				1 = Enabled
				For normal operation, this bit should be set to 1 after the DC offset cancellation has been scheduled.
	5	HPOUT1L_DLY	0	Enables HPOUT1L intermediate stage
				0 = Disabled
				1 = Enabled
				For normal operation, this bit should be set to 1 after the output signal path has been configured, and before DC offset cancellation is scheduled. This bit should be set with at least 20us delay after HPOUT1L_ENA.
	3	HPOUT1R_RMV	0	Removes HPOUT1R short
		_SHORT		0 = HPOUT1R short enabled
				1 = HPOUT1R short removed
				For normal operation, this bit should be set as the final step of the HPOUT1R Enable sequence.
	2	HPOUT1R_OUT	0	Enables HPOUT1R output stage
		Р		0 = Disabled
				1 = Enabled
				For normal operation, this bit should be set to 1 after the DC offset cancellation has been scheduled.
	1	HPOUT1R_DLY	0	Enables HPOUT1R intermediate stage 0 = Disabled 1 = Enabled
				For normal operation, this bit should be set to 1 after the output signal path has been configured, and before DC offset cancellation is scheduled. This bit should be set with at least 20us delay after HPOUT1R_ENA.

Register 60h Analogue HP 0

REGISTER ADDRESS	BIT	LABEL	DEFAULT	DESCRIPTION
R98 (62h) EQ1	0	EQ_ENA	0	EQ Enable 0 = EQ disabled 1 = EQ enabled

Register 62h EQ1

REGISTER ADDRESS	BIT	LABEL	DEFAULT	DESCRIPTION
R99 (63h) EQ2	4:0	EQ_B1_GAIN [4:0]	0_1100	EQ Band 1 Gain 00000 = -12dB 00001 = -11dB 10111 = +11dB 11000 = +12dB 11001 to 11111 Reserved

Register 63h EQ2

REGISTER ADDRESS	BIT	LABEL	DEFAULT	DESCRIPTION
R100 (64h) EQ3	4:0	EQ_B2_GAIN [4:0]	0_1100	EQ Band 2 Gain 00000 = -12dB 00001 = -11dB 10111 = +11dB 11000 = +12dB 11001 to 11111 Reserved

Register 64h EQ3

REGISTER ADDRESS	BIT	LABEL	DEFAULT	DESCRIPTION
R101 (65h) EQ4	4:0	EQ_B3_GAIN [4:0]	0_1100	EQ Band 3 Gain 00000 = -12dB 00001 = -11dB 10111 = +11dB 11000 = +12dB 11001 to 11111 Reserved

Register 65h EQ4

REGISTER ADDRESS	BIT	LABEL	DEFAULT	DESCRIPTION
R102 (66h) EQ5	4:0	EQ_B4_GAIN [4:0]	0_1100	EQ Band 4 Gain 00000 = -12dB 00001 = -11dB 10111 = +11dB 11000 = +12dB
				11000 = +1205 11001 to 11111 Reserved

Register 66h EQ5

REGISTER ADDRESS	BIT	LABEL	DEFAULT	DESCRIPTION
R103 (67h) EQ6	4:0	EQ_B5_GAIN [4:0]	0_1100	EQ Band 5 Gain 00000 = -12dB 00001 = -11dB 10111 = +11dB 11000 = +12dB 11001 to 11111 Reserved

Register 67h EQ6

REGISTER ADDRESS	BIT	LABEL	DEFAULT	DESCRIPTION
R104 (68h) EQ7	15:0	EQ_B1_A [15:0]	0000_1111 _1100_101 _0	EQ Band 1 Coefficient A

Register 68h EQ7

REGISTER ADDRESS	BIT	LABEL	DEFAULT	DESCRIPTION
R105 (69h) EQ8	15:0	EQ_B1_B [15:0]	0000_0100 _0000_000 0	EQ Band 1 Coefficient B

Register 69h EQ8

REGISTER ADDRESS	BIT	LABEL	DEFAULT	DESCRIPTION
R106 (6Ah) EQ9	15:0	EQ_B1_PG [15:0]	0000_0000 _1101_100 _0	EQ Band 1 Coefficient PG

Register 6Ah EQ9

REGISTER ADDRESS	BIT	LABEL	DEFAULT	DESCRIPTION
R107 (6Bh) EQ10	15:0	EQ_B2_A [15:0]	0001_1110 _1011_010 _1	EQ Band 2 Coefficient A

Register 6Bh EQ10

REGISTER ADDRESS	BIT	LABEL	DEFAULT	DESCRIPTION
R108 (6Ch) EQ11	15:0	EQ_B2_B [15:0]	1111_0001 _0100_010 _1	EQ Band 2 Coefficient B

Register 6Ch EQ11

REGISTER ADDRESS	BIT	LABEL	DEFAULT	DESCRIPTION
R109 (6Dh) EQ12	15:0	EQ_B2_C [15:0]	0000_1011 _0111_010 1	EQ Band 2 Coefficient C

Register 6Dh EQ12

REGISTER ADDRESS	BIT	LABEL	DEFAULT	DESCRIPTION
R110 (6Eh) EQ13	15:0	EQ_B2_PG [15:0]	0000_0001 _1100_010 _1	EQ Band 2 Coefficient PG

Register 6Eh EQ13

REGISTER ADDRESS	BIT	LABEL	DEFAULT	DESCRIPTION
R111 (6Fh) EQ14	15:0	EQ_B3_A [15:0]	0001_1100 _0101_100 _0	EQ Band 3 Coefficient A

Register 6Fh EQ14

REGISTER	BIT	LABEL	DEFAULT	DESCRIPTION
ADDRESS				
R112 (70h) EQ15	15:0	EQ_B3_B [15:0]	1111_0011 _0111_001 1	EQ Band 3 Coefficient B

Register 70h EQ15

REGISTER ADDRESS	BIT	LABEL	DEFAULT	DESCRIPTION
R113 (71h) EQ16	15:0	EQ_B3_C [15:0]	0000_1010 _0101_010 _0	EQ Band 3 Coefficient C

Register 71h EQ16

REGISTER ADDRESS	BIT	LABEL	DEFAULT	DESCRIPTION
R114 (72h) EQ17	15:0	EQ_B3_PG [15:0]	0000_0101 _0101_100 _0	EQ Band 3 Coefficient PG

Register 72h EQ17

REGISTER ADDRESS	BIT	LABEL	DEFAULT	DESCRIPTION
R115 (73h) EQ18	15:0	EQ_B4_A [15:0]	0001_0110 _1000_111 _0	EQ Band 4 Coefficient A

Register 73h EQ18

REGISTER ADDRESS	BIT	LABEL	DEFAULT	DESCRIPTION
R116 (74h) EQ19	15:0	EQ_B4_B [15:0]	1111_1000 _0010_100 1	EQ Band 4 Coefficient B

Register 74h EQ19

REGISTER ADDRESS	BIT	LABEL	DEFAULT	DESCRIPTION
R117 (75h) EQ20	15:0	EQ_B4_C [15:0]	0000_0111 _1010_110 1	EQ Band 4 Coefficient C

Register 75h EQ20

REGISTER ADDRESS	BIT	LABEL	DEFAULT	DESCRIPTION
R118 (76h) EQ21	15:0	EQ_B4_PG [15:0]	0001_0001 _0000_001 _1	EQ Band 4 Coefficient PG

Register 76h EQ21

REGISTER ADDRESS	BIT	LABEL	DEFAULT	DESCRIPTION
R119 (77h) EQ22	15:0	EQ_B5_A [15:0]	0000_0101 _0110_010 0	EQ Band 5 Coefficient A

Register 77h EQ22

REGISTER ADDRESS	BIT	LABEL	DEFAULT	DESCRIPTION
R120 (78h) EQ23	15:0	EQ_B5_B [15:0]	0000_0101 _0101_100 1	EQ Band 5 Coefficient B

Register 78h EQ23

REGISTER ADDRESS	BIT	LABEL	DEFAULT	DESCRIPTION
R121 (79h) EQ24	15:0	EQ_B5_PG [15:0]	0100_0000 _0000_000 0	EQ Band 5 Coefficient PG

Register 79h EQ24

REGISTER ADDRESS	BIT	LABEL	DEFAULT	DESCRIPTION
R122 (7Ah) Digital Pulls	7	MCLK_PU	0	MCLK pull-up resistor enable 0 = pull-up disabled 1 = pull-up enabled
	6	MCLK_PD	0	MCLK pull-down resistor enable 0 = pull-down disabled 1 = pull-down enabled
	5	DACDAT_PU	0	DACDAT pull-up resistor enable 0 = pull-up disabled 1 = pull-up enabled
	4	DACDAT_PD	0	DACDAT pull-down resistor enable 0 = pull-down disabled 1 = pull-down enabled
	3	LRCLK_PU	0	LRCLK pull-up resistor enable 0 = pull-up disabled 1 = pull-up enabled
	2	LRCLK_PD	0	LRCLK pull-down resistor enable 0 = pull-down disabled 1 = pull-down enabled
	1	BCLK_PU	0	BCLK pull-up resistor enable 0 = pull-up disabled 1 = pull-up enabled
	0	BCLK_PD	0	BCLK pull-down resistor enable 0 = pull-down disabled 1 = pull-down enabled

Register 7Ah Digital Pulls

REGISTER ADDRESS	BIT	LABEL	DEFAULT	DESCRIPTION
R123 (7Bh)	15	DRC_ENA	0	DRC enable
DRC Control				0 = disabled
1				1 = enabled
	14	DRC_DAC_PAT	0	DRC path select
		Н		0 = ADC path
				1 = DAC path
	11	DRC_SMOOTH	1	Gain smoothing enable
		_ENA		0 = disabled
				1 = enabled
	10	DRC_QR_ENA	1	Quick release enable
				0 = disabled
				1 = enabled
	9	DRC_ANTICLIP	1	Anti-clip enable
		_ENA		0 = disabled
				1 = enabled
	8	DRC_HYST_EN	1	Gain smoothing hysteresis enable
		A		0 = disabled
				1 = enabled
	5:4	DRC_THRESH_	00	Gain smoothing hysteresis threshold
		HYST [1:0]		00 = Low
				01 = Medium (recommended)
				10 = High

REGISTER ADDRESS	BIT	LABEL	DEFAULT	DESCRIPTION
				11 = Reserved
	3:2	DRC_MINGAIN [1:0]	10	Minimum gain the DRC can use to attenuate audio signals 00 = 0dB (default) 01 = -6dB 10 = -12dB 11 = -18dB
	1:0	DRC_MAXGAIN [1:0]	00	Maximum gain the DRC can use to boost audio signals 00 = 12dB 01 = 18dB (default) 10 = 24dB 11 = 36dB

Register 7Bh DRC Control 1

REGISTER ADDRESS	BIT	LABEL	DEFAULT	DESCRIPTION
R124 (7Ch)	15:12	DRC_ATTACK_	0000	Gain attack rate (seconds/6dB)
DRC Control	10.12	RATE [3:0]	0000	0000 = Reserved
2				0000 = Reserved 0001 = 181us
				0010 = 363us
				0010 = 363us 0011 = 726us
				0100 = 1.45ms
				0100 = 1.45ms
				0101 = 5.8ms
				0111 = 11.6ms
				1000 = 23.2ms
				1001 = 46.4ms
				1010 = 92.8ms
				1011 = 185.6ms
				1100-1111 = Reserved
	11:8	DRC_DECAY_R	0000	Gain decay rate (seconds/6dB)
		ATE [3:0]		0000 = 186ms
				0001 = 372ms
				0010 = 743ms
				0011 = 1.49s
				0100 = 2.97s
				0101 = 5.94s
				0110 = 11.89s
				0111 = 23.78s
				1000 = 47.56s
				1001-1111 = Reserved
	7:2	DRC_THRESH_	00_0000	Compressor threshold T (dB)
		COMP [5:0]		000000 = 0dB
				000001 = -0.75dB
				000010 = -1.5dB
				(-0.75dB steps)
				111100 = -45dB
				111101 = Reserved
				11111X = Reserved

Register 7Ch DRC Control 2

REGISTER ADDRESS	BIT	LABEL	DEFAULT	DESCRIPTION
R125 (7Dh) DRC Control 3	15:11	DRC_AMP_CO MP [4:0]	0_0000	Compressor amplitude at threshold YT (dB) 00000 = 0dB 00001 = -0.75dB 00010 = -1.5dB (-0.75dB steps) 11110 = -22.5dB 11111 = Reserved
	10:8	DRC_R0_SLOP E_COMP [2:0]	000	Compressor slope R0 000 = 1 (no compression) 001 = 1/2 010 = 1/4 011 = 1/8 100 = 1/16 101 = 0 110 = Reserved 111 = Reserved
	7	DRC_FF_DELA Y	1	Feed-forward delay for anti-clip feature 0 = 5 samples 1 = 9 samples Time delay can be calculated as 5/fs or 9/ fs, where fs is the sample rate.
	3:2	DRC_THRESH_ QR [1:0]	00	Quick release crest factor threshold 00 = 12dB 01 = 18dB (default) 10 = 24dB 11 = 30dB
	1:0	DRC_RATE_QR [1:0]	00	Quick release decay rate (seconds/6dB) 00 = 0.725ms (default) 01 = 1.45ms 10 = 5.8ms 11 = Reserved

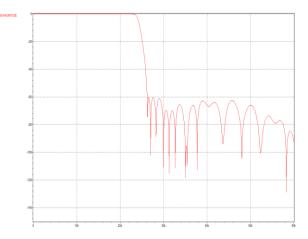
Register 7Dh DRC Control 3

REGISTER	BIT	LABEL	DEFAULT	DESCRIPTION
ADDRESS				
R126 (7Eh)	15:13	DRC_R1_SLOP	000	Compressor slope R1
DRC Control		E_COMP [2:0]		000 = 1 (no compression)
4				001 = 1/2
				010 = 1/4
				011 = 1/8
				100 = 0
				101 = Reserved
				11X = Reserved
	12:8	DRC_STARTUP	0_000	Initial gain at DRC startup
		_GAIN [4:0]		00000 = -18dB
				00001 = -15dB
				00010 = -12dB
				00011 = -9dB
				00100 = -6dB
				00101 = -3dB
				00110 = 0dB (default)

REGISTER	BIT	LABEL	DEFAULT	DESCRIPTION
ADDRESS				
				00111 = 3dB
				01000 = 6dB
				01001 = 9dB
				01010 = 12dB
				01011 = 15dB
				01100 = 18dB
				01101 = 21dB
				01110 = 24dB
				01111 = 27dB
				10000 = 30dB
				10001 = 33dB
				10010 = 36dB
				10011 to 11111 = Reserved

Register 7Eh DRC Control 4

DIGITAL FILTER CHARACTERISTICS


PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT
ADC Filter					
Passband	+/- 0.05dB	0		0.454 fs	
	-6dB		0.5 fs		
Passband Ripple				+/- 0.05	dB
Stopband		0.546 fs			
Stopband Attenuation	f > 0.546 fs	-60			dB
Group delay				2	ms
DAC Normal Filter					
Passband	+/- 0.05dB	0		0.454 fs	
	-6dB		0.5 fs		
Passband Ripple	0.454 fs			+/- 0.03	dB
Stopband		0.546 fs			
Stopband Attenuation	f > 0.546 fs	-50			dB
Group delay				2	ms
DAC Sloping Stopband Filter	r				
Passband	+/- 0.03dB	0		0.25 fs	
	+/- 1dB	0.25 fs		0.454 fs	
	-6dB		0.5 fs		
Passband Ripple	0.25 fs			+/- 0.03	dB
Stopband 1		0.546 fs		0.7 fs	
Stopband 1 Attenuation	f > 0.546 fs	-60			dB
Stopband 2		0.7 fs		1.4 fs	
Stopband 2 Attenuation	f > 0.7 fs	-85			dB
Stopband 3		1.4 fs			
Stopband 3 Attenuation	f > 1.4 fs	-55			dB
Group delay				2	ms

TERMINOLOGY

- 1. Stop Band Attenuation (dB) the degree to which the frequency spectrum is attenuated (outside audio band)
- 2. Pass-band Ripple any variation of the frequency response in the pass-band region

ADC FILTER RESPONSES

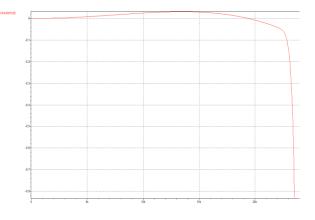


Figure 71 ADC Digital Filter Frequency Response

Figure 72 ADC Digital Filter Ripple

ADC HIGH PASS FILTER RESPONSES

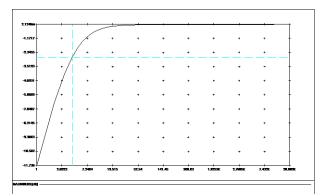


Figure 73 ADC Digital High Pass Filter Frequency Response (48kHz, Hi-Fi Mode, ADC_HPF_CUT[1:0]=00)

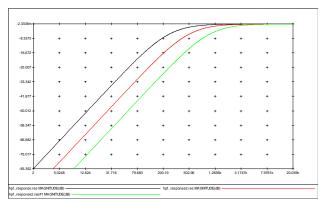
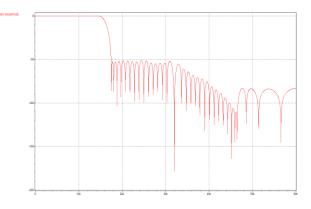



Figure 74 ADC Digital High Pass Filter Ripple (48kHz, Voice Mode, ADC_HPF_CUT=01, 10 and 11)

DAC FILTER RESPONSES

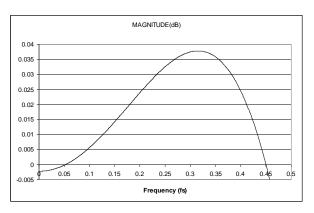


Figure 75 DAC Digital Filter Frequency Response; (Normal Mode); Sample Rate > 24kHz

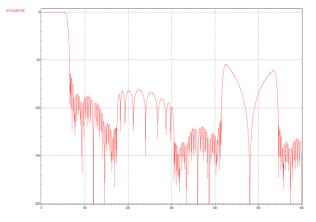


Figure 77 DAC Digital Filter Frequency Response; (Sloping Stopband Mode); Sample Rate <= 24kHz

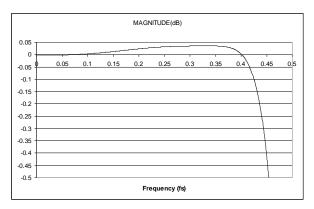
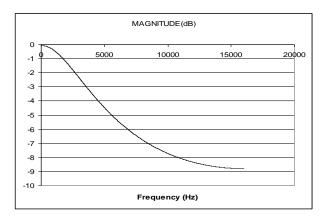



Figure 78 DAC Digital Filter Ripple (Sloping Stopband Mode)

DE-EMPHASIS FILTER RESPONSES

Figure 79 De-Emphasis Digital Filter Response (32kHz)

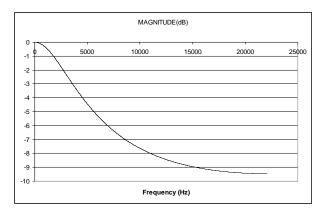
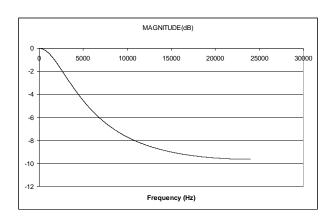



Figure 81 De-Emphasis Digital Filter Response (44.1kHz)

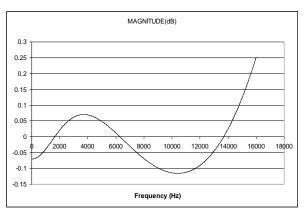
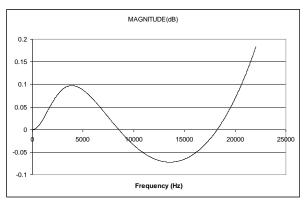
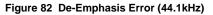




Figure 80 De-Emphasis Error (32kHz)

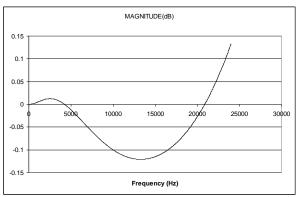
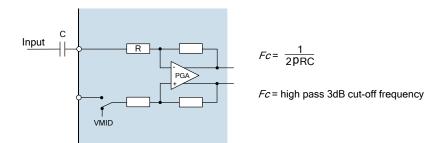


Figure 84 De-Emphasis Error (48kHz)



APPLICATIONS INFORMATION

RECOMMENDED EXTERNAL COMPONENTS

AUDIO INPUT PATHS

The WM8993 provides 8 analogue audio inputs. Each of these inputs is referenced to the internal DC reference, VMID. A DC blocking capacitor is required for each input pin used in the target application. The choice of capacitor is determined by the filter that is formed between that capacitor and the input impedance of the input pin. The circuit is illustrated in Figure 85.

If the input impedance is known, and the cut-off frequency is known, then the minimum capacitor value may be derived easily. However, it can be seen from the representation in Figure 85 that the input impedance is not fixed in all applications but can vary with gain and boost amplifier settings.

The PGA input	resistance for	everv dair	setting is	detailed in	Table 114.
The Continput		Cvcry gan	i soung is	uctaneu m	

		-	
IN1L_VOL[4:0], IN2L_VOL[4:0],	VOLUME (dB)	INPUT RES	
IN1R_VOL[4:0], IN2R_VOL[4:0]	()	SINGLE-ENDED MODE	DIFFERENTIAL MODE
00000	-16.5	58	52.5
00001	-15.0	56.9	50.6
00010	-13.5	55.6	48.6
00011	-12.0	54.1	46.4
00100	-10.5	52.5	44.1
00101	-9.0	50.7	41.5
00110	-7.5	48.6	38.9
00111	-6.0	46.5	36.2
01000	-4.5	44.1	33.4
01001	-3.0	41.6	30.6
01010	-1.5	38.9	27.8
01011	0	36.2	25.1
01100	+1.5	33.4	22.5
01101	+3.0	30.6	20.0
01110	+4.5	27.8	17.7
01111	+6.0	25.1	15.6
10000	+7.5	22.5	13.6
10001	+9.0	20.1	11.9
10010	+10.5	17.8	10.3
10011	+12.0	15.6	8.9
10100	+13.5	13.7	7.6

10101	+15.0	11.9	6.5
10110	+16.5	10.3	5.6
10111	+18.0	8.9	4.8
11000	+19.5	7.7	4.1
11001	+21.0	6.6	3.5
11010	+22.5	5.6	2.9
11011	+24.0	4.8	2.5
11100	+25.5	4.1	2.1
11101	+27.0	3.5	1.8
11110	+28.5	2.9	1.5
11111	+30.0	2.5	1.3

Table 114 PGA Input Pin Resistance

The appropriate input capacitor may be selected using the PGA input resistance data provided in Table 114, depending on the required PGA gain setting(s).

The choice of capacitor for a 20Hz cut-off frequency is shown in Table 115 for a selection of typical input impedance conditions.

INPUT IMPEDANCE	MINIMUM CAPACITANCE FOR 20HZ PASS BAND
2kΩ	4 μF
15kΩ	0.5 μF
30kΩ	0.27 μF
60kΩ	0.13 μF

Table 115 Audio Input DC Blocking Capacitors

Using the figures in Table 115, it follows that a 1μ F capacitance for all input connections will give good results in most cases. Tantalum electrolytic capacitors are particularly suitable as they offer high stability in a small package size.

Ceramic equivalents are a cost effective alternative to the superior tantalum packages, but care must be taken to ensure the desired capacitance is maintained at the AVDD1 operating voltage. Also, ceramic capacitors may show microphonic effects, where vibrations and mechanical conditions give rise to electrical signals. This is particularly problematic for microphone input paths where a large signal gain is required.

A single capacitor is required for a line input or single-ended microphone connection. In the case of a differential microphone connection, a DC blocking capacitor is required on both input pins.

HEADPHONE OUTPUT PATH

The headphone output on WM8993 is ground referenced and therefore does not require the large, expensive capacitors necessary for VMID reference solutions. For best audio performance, it is recommended to connect a zobel network to the audio output pins. This network should comprise of a 100nF capacitor and 20ohm resistor in series with each other (see "Analogue Outputs" section). These components have the effect of dampening high frequency oscillations or instabilities that can arise outside the audio band under certain conditions. Possible sources of these instabilities include the inductive load of a headphone coil or an active load in the form of an external line amplifier.

EARPIECE DRIVER OUTPUT PATH

The earpiece driver on HPOUT2P and HPOUTN is designed as a 320hm BTL speaker driver. The outputs are referenced to the internal DC reference VMID, but direct connection to the speaker is possible because of the BTL configuration. There is no requirement for DC blocking capacitors.

LINE OUTPUT PATHS

The WM8993 provides four line outputs (LINEOUT1P, LINEOUT1N, LINEOUT2P and LINEOUT2N). Each of these outputs is referenced to the internal DC reference, VMID. In any the case where a line output is used in a single-ended configuration (i.e. referenced to AGND), a DC blocking capacitor will be required in order to remove the DC bias. In the case where a pair of line outputs is configured as a BTL differential pair, then the DC blocking capacitor should be omitted.

The choice of capacitor is determined from the filter that is formed between the capacitor and the load impedance – see Figure 86.

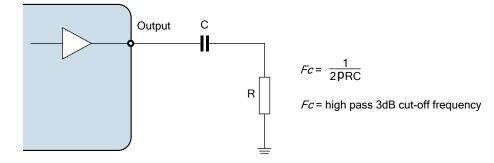


Figure 86 Line Output Path Components

LOAD IMPEDANCE	MINIMUM CAPACITANCE FOR 20HZ PASS BAND
10kΩ	0.8 μF
47kΩ	0.17 μF

Table 116 Line Output Frequency Cut-Off

Using the figures in Table 116, it follows that that a 1μ F capacitance would be a suitable choice for a line load. Tantalum electrolytic capacitors are again particularly suitable but ceramic equivalents are a cost effective alternative. Care must be taken to ensure the desired capacitance is maintained at the appropriate operating voltage.

POWER SUPPLY DECOUPLING

Electrical coupling exists particularly in digital logic systems where switching in one sub-system causes fluctuations on the power supply. This effect occurs because the inductance of the power supply acts in opposition to the changes in current flow that are caused by the logic switching. The resultant variations (or 'spikes') in the power supply voltage can cause malfunctions and unintentional behavior in other components. A decoupling (or 'bypass') capacitor can be used as an energy storage component which will provide power to the decoupled circuit for the duration of these power supply variations, protecting it from malfunctions that could otherwise arise.

Coupling also occurs in a lower frequency form when ripple is present on the power supply rail caused by changes in the load current or by limitations of the power supply regulation method. In audio components such as the WM8993, these variations can alter the performance of the signal path, leading to degradation in signal quality. A decoupling (or 'bypass') capacitor can be used to filter these effects, by presenting the ripple voltage with a low impedance path that does not affect the circuit to be decoupled.

These coupling effects are addressed by placing a capacitor between the supply rail and the corresponding ground reference. In the case of systems comprising multiple power supply rails, decoupling should be provided on each rail.

POWER SUPPLY	DECOUPLING CAPACITOR
DCVDD, DBVDD, AVDD2	0.1µF ceramic
AVDD1, SPKVDD	0.1µF ceramic (see Note)
CPVDD	4.7μF ceramic
VMIDC	4.7μF ceramic

The recommended power supply decoupling capacitors for WM8993 are listed below in Table 117.

Table 117 Power Supply Decoupling Capacitors

Note: $0.1\mu F$ is required with $4.7\mu F$ a guide to the total required power rail capacitance, including that at the regulator output.

All decoupling capacitors should be placed as close as possible to the WM8993 device. The connection between AGND, the AVDD1 decoupling capacitor and the main system ground should be made at a single point as close as possible to the AGND ball of the WM8993.

The VMID capacitor is not, technically, a decoupling capacitor. However, it does serve a similar purpose in filtering noise on the VMID reference. The connection between AGND, the VMID decoupling capacitor and the main system ground should be made at a single point as close as possible to the AGND ball of the WM8993.

Due to the wide tolerance of many types of ceramic capacitors, care must be taken to ensure that the selected components provide the required capacitance across the required temperature and voltage ranges in the intended application. For most application the use of ceramic capacitors with capacitor dielectric X5R is recommended.

CHARGE PUMP COMPONENTS

A fly-back capacitor is required between the CPCA and CPCB pins. The required capacitance is $2.2\mu F$ at 2V.

A decoupling capacitor is required on CPVOUTP and CPVOUTN; the recommended value is $2.2\mu F$ at 2V.

The positioning of the Charge Pump capacitors is important, particularly the fly-back capacitor. These capacitors should be placed as close as possible to the WM8994.

Due to the wide tolerance of many types of ceramic capacitors, care must be taken to ensure that the selected components provide the required capacitance across the required temperature and voltage ranges in the intended application. For most application the use of ceramic capacitors with capacitor dielectric X5R is recommended.

MICROPHONE BIAS CIRCUIT

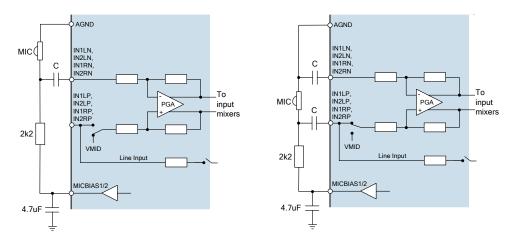
The WM8993 is designed to interface easily with up to four microphones. These may be connected in single-ended or differential configurations. The single-ended method allows greater capability for the connection of multiple audio sources simultaneously, whilst the differential method provides better performance due to its rejection of common-mode noise.

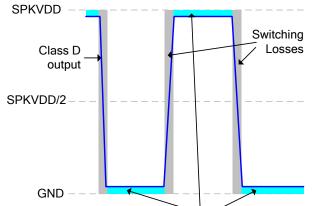
In either configuration, the microphone requires a bias current (electret condenser microphones) or voltage supply (silicon microphones), which can be provided by MICBIAS1 or MICBIAS2. These are generated by identical output-compensated amplifiers, which require an external capacitor in order to guarantee accuracy and stability. The recommended capacitance is 4.7μ F, although it may be possible to reduce this to 1μ F if the analogue supply (AVDD1) is not too noisy. A ceramic type is a suitable choice here, providing that care is taken to choose a component that exhibits this capacitance at the intended MICBIAS voltage.

Note that the MICBIAS voltage may be adjusted using register control to suit the requirements of the microphone. Also note the WM8993 supports a maximum current of 2.4mA per MICBIAS pin. If more than one microphone is connected to a single MICBIAS pin, the combined current of these must not exceed 2.4mA.

A current-limiting resistor is also required when using an electret condenser microphone (ECM). The resistance should be chosen according to the minimum operating impedance of the microphone and MICBIAS voltage so that the maximum bias current of the WM8993 is not exceeded. Cirrus Logic recommends a $2.2k\Omega$ current limiting resistor as it provides compatibility with a wide range of microphone models.

Figure 87 illustrates the recommended single-ended and differential microphone connections for the WM8993.




Figure 87 Single-Ended and Differential Microphone Connections

CLASS D SPEAKER CONNECTIONS

The WM8993 incorporates two Class D/AB 1W speaker drivers. By default, the speaker drivers operate in Class D mode, which offers high amplifier efficiency at large signal levels. As the Class D output is a pulse width modulated signal, the choice of speakers and tracking of signals is critical for ensuring good performance and reducing EMI in this mode.

The efficiency of the speaker drivers is affected by the series resistance between the WM8993 and the speaker (e.g. PCB track loss and inductor ESR) as shown in Figure 88. This resistance should be as low as possible to maximise efficiency.

Losses due to resistance between WM8993 and speaker (e.g. inductor ESR) This resistance must be minimised in order to maximise efficiency.

The Class D output requires external filtering in order to recreate the audio signal. This may be implemented using a 2nd order LC or 1st order RC filter, or else may be achieved by using a loudspeaker whose internal inductance provides the required filter response. An LC or RC filter should be used if the loudspeaker characteristics are unknown or unsuitable, or if the length of the loudspeaker connection is likely to lead to EMI problems.

In applications where it is necessary to provide Class D filter components, a 2nd order LC filter is the recommended solution as it provides more attenuation at higher frequencies and minimises power dissipated in the filter when compared to a first order RC filter (lower ESR). This maximises both rejection of unwanted switching frequencies and overall speaker efficiency. A suitable implementation is illustrated in Figure 89.

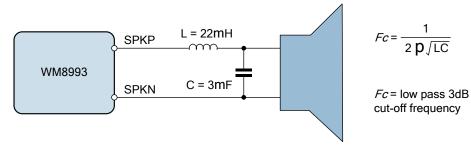
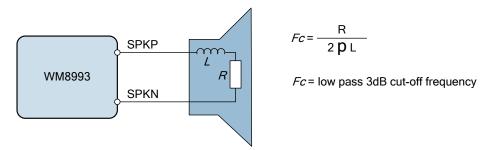



Figure 89 Class D Output Filter Components

Figure 88 Speaker Connection Losses

A simple equivalent circuit of a loudspeaker consists of a serially connected resistor and inductor, as shown in Figure 90. This circuit provides a low pass filter for the speaker output. If the loudspeaker characteristics are suitable, then the loudspeaker itself can be used in place of the filter components described earlier. This is known as 'filterless' operation.

Figure 90 Speaker Equivalent Circuit for Filterless Operation

For filterless Class D operation, it is important to ensure that a speaker with suitable inductance is chosen. For example, if we know the speaker impedance is 8Ω and the desired cut-off frequency is 20kHz, then the optimum speaker inductance may be calculated as:

$$L = \frac{R}{2 \pi Fc} = \frac{8\Omega}{2 \pi * 20 \text{kHz}} = 64 \mu \text{H}$$

 8Ω loudspeakers typically have an inductance in the range 20μ H to 100μ H, however, it should be noted that a loudspeaker inductance will not be constant across the relevant frequencies for Class D operation (up to and beyond the Class D switching frequency). Care should be taken to ensure that the cut-off frequency of the loudspeaker's filtering is low enough to suppress the high frequency energy of the Class D switching and, in so doing, to prevent speaker damage. The Class D outputs of the WM8993 operate at much higher frequencies than is recommended for most speakers and it must be ensured that the cut-off frequency is low enough to protect the speaker.

RECOMMENDED EXTERNAL COMPONENTS DIAGRAM

Figure 91 and Figure 92 below provide a summary of recommended external components for WM8993. Note that these diagrams do not include any components that are specific to the end application e.g. they do not include filtering on the speaker outputs (assume filterless class D operation), RF decoupling, or RF filtering for pins which connect to the external world i.e. headphone or speaker outputs.

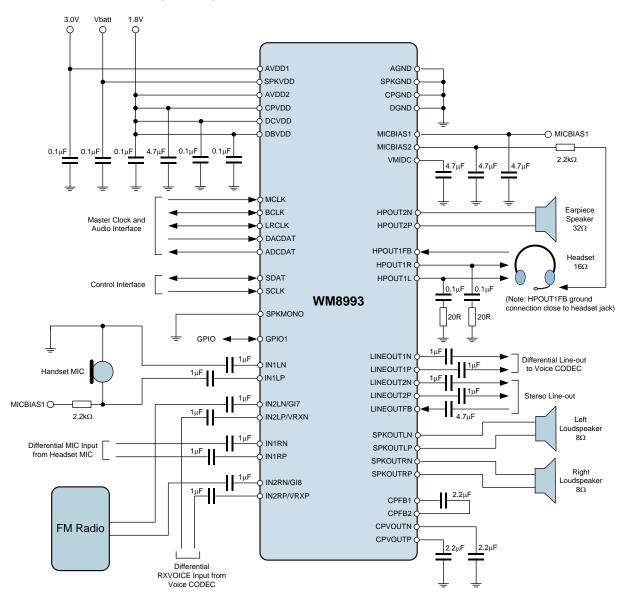


Figure 91 Recommended External Components Diagram – 1W Stereo Mode

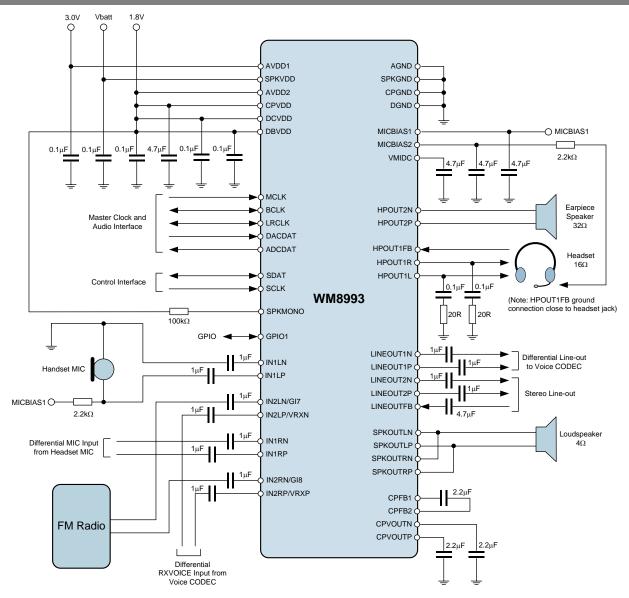


Figure 92 Recommended External Components Diagram – 2W Mono Mode

PCB LAYOUT CONSIDERATIONS

Poor PCB layout will degrade the performance and be a contributory factor in EMI, ground bounce and resistive voltage losses. All external components should be placed as close to the WM8993 device as possible, with current loop areas kept as small as possible. Specific factors relating to Class D loudspeaker connection are detailed below.

CLASS D LOUDSPEAKER CONNECTION

Long, exposed PCB tracks or connection wires will emit EMI. The distance between the WM8993 and the loudspeaker should therefore be kept as short as possible. Where speakers are connected to the PCB via a cable form, it is recommended that a shielded twisted pair cable is used. The shield should be connected to the main system, with care taken to ensure ground loops are avoided.

Further reduction in EMI can be achieved using PCB ground (or VDD) planes and also by using passive LC components to filter the Class D switching waveform. When passive filtering is used, low ESR components should be chosen in order to minimise the series resistance between the WM8993 and the speaker, maximising the power efficiency.

LC passive filtering will usually be effective at reducing EMI at frequencies up to around 30MHz. To reduce emissions at higher frequencies, ferrite beads can also be used. These should be positioned as close to the device as possible.

These techniques for EMI reduction are illustrated in Figure 93.

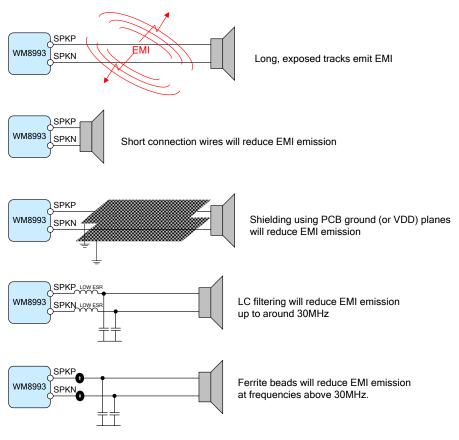
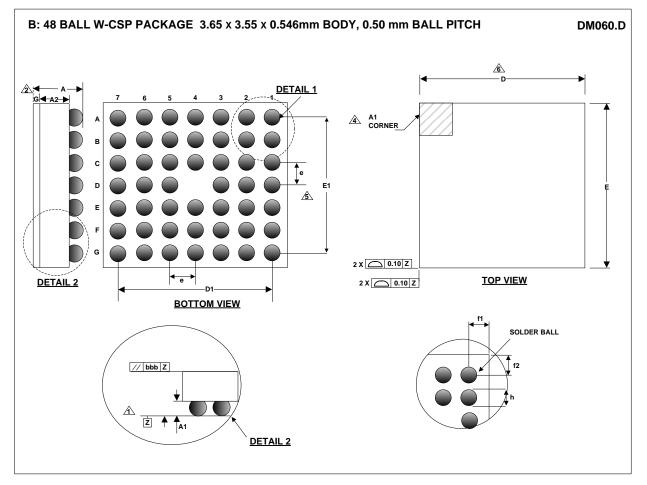



Figure 93 EMI Reduction Techniques

PACKAGE DIMENSIONS

Symbols	Dimensions (mm)						
	MIN	NOM	MAX	NOTE			
A	0.506	0.546	0.586				
A1	0.207	0.244	0.281				
A2	0.265	0.280	0.295				
D	3.620	3.650	3.680				
D1		3.000 BSC					
E	3.520	3.550	3.580				
E1		3.000 BSC					
е		0.500 BSC		5			
f1		0.325 BSC					
f2		0.275 BSC					
g	0.019	0.022	0.025				
h		0.314 BSC					

NOTES:

NOTES: 1. PRIMARY DATUM -Z- AND SEATING PLANE ARE DEFINED BY THE SPHERICAL CROWNS OF THE SOLDER BALLS. 2. THIS DIMENSION INCLUDES STAND-OFF HEIGHT 'A1' AND BACKSIDE COATING. 3. A1 CORNER IS IDENTIFIED BY INK/LASER MARK ON TOP PACKAGE. 4. BILATERAL TOLERANCE ZONE IS APPLIED TO EACH SIDE OF THE PACKAGE BODY. 5. 'e' REPRESENTS THE BASIC SOLDER BALL GRID PITCH. 6. THIS DRAWING IS SUBJECT TO CHANGE WITHOUT NOTICE. 7. FOLLOWS JEDEC DESIGN GUIDE MO-211-C.

IMPORTANT NOTICE

Contacting Cirrus Logic Support

For all product questions and inquiries, contact a Cirrus Logic Sales Representative. To find one nearest you, go to www.cirrus.com.

For the purposes of our terms and conditions of sale, "Preliminary" or "Advanced" datasheets are non-final datasheets that include but are not limited to datasheets marked as "Target", "Advance", "Product Preview", "Preliminary Technical Data" and/or "Preproduction." Products provided with any such datasheet are therefore subject to relevant terms and conditions associated with "Preliminary" or "Advanced" designations. The products and services of Cirrus Logic International (UK) Limited: Cirrus Logic. Inc.: and other companies in the Cirrus Logic group (collectively either "Cirrus Logic" or "Cirrus") are sold subject to Cirrus Logic's terms and conditions of sale supplied at the time of order acknowledgment, including those pertaining to warranty, indemnification, and limitation of liability. Software is provided pursuant to applicable license terms. Cirrus Logic reserves the right to make changes to its products and specifications or to discontinue any product or service without notice. Customers should therefore obtain the latest version of relevant information from Cirrus Logic to verify that the information is current and complete. Testing and other guality control techniques are utilized to the extent Cirrus Logic deems necessary. Specific testing of all parameters of each device is not necessarily performed. In order to minimize risks associated with customer applications, the customer must use adequate design and operating safeguards to minimize inherent or procedural hazards. Cirrus Logic is not liable for applications assistance or customer product design. The customer is solely responsible for its selection and use of Cirrus Logic products. Use of Cirrus Logic products may entail a choice between many different modes of operation, some or all of which may require action by the user, and some or all of which may be optional. Nothing in these materials should be interpreted as instructions or suggestions to choose one mode over another. Likewise, description of a single mode should not be interpreted as a suggestion that other modes should not be used or that they would not be suitable for operation. Features and operations described herein are for illustrative purposes only.

CERTAIN APPLICATIONS USING SEMICONDUCTOR PRODUCTS MAY INVOLVE POTENTIAL RISKS OF DEATH, PERSONAL INJURY, OR SEVERE PROPERTY OR ENVIRONMENTAL DAMAGE ("CRITICAL APPLICATIONS"). CIRRUS LOGIC PRODUCTS ARE NOT DESIGNED, AUTHORIZED OR WARRANTED FOR USE IN PRODUCTS SURGICALLY IMPLANTED INTO THE BODY, AUTOMOTIVE SAFETY OR SECURITY DEVICES, NUCLEAR SYSTEMS, LIFE SUPPORT PRODUCTS OR OTHER CRITICAL APPLICATIONS. INCLUSION OF CIRRUS LOGIC PRODUCTS IN SUCH APPLICATIONS IS UNDERSTOOD TO BE FULLY AT THE CUSTOMER'S RISK AND CIRRUS LOGIC DISCLAIMS AND MAKES NO WARRANTY, EXPRESS, STATUTORY OR IMPLIED, INCLUDING THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR PARTICULAR PURPOSE, WITH REGARD TO ANY CIRRUS LOGIC PRODUCT THAT IS USED IN SUCH A MANNER. IF THE CUSTOMER OR CUSTOMER'S CUSTOMER USES OR PERMITS THE USE OF CIRRUS LOGIC PRODUCTS IN CRITICAL APPLICATIONS, CUSTOMER AGREES, BY SUCH USE, TO FULLY INDEMNIFY CIRRUS LOGIC, ITS OFFICERS, DIRECTORS, EMPLOYEES, DISTRIBUTORS AND OTHER AGENTS FROM ANY AND ALL LIABILITY, INCLUDING ATTORNEYS' FEES AND COSTS, THAT MAY RESULT FROM OR ARISE IN CONNECTION WITH THESE USES.

This document is the property of Cirrus Logic and by furnishing this information, Cirrus Logic grants no license, express or implied, under any patents, mask work rights, copyrights, trademarks, trade secrets or other intellectual property rights. Any provision or publication of any third party's products or services does not constitute Cirrus Logic's approval, license, warranty or endorsement thereof. Cirrus Logic gives consent for copies to be made of the information contained herein only for use within your organization with respect to Cirrus Logic integrated circuits or other products of Cirrus Logic, and only if the reproduction is without alteration and is accompanied by all associated copyright, proprietary and other notices and conditions (including this notice). This consent does not extend to other copying such as copying for general distribution, advertising or promotional purposes, or for creating any work for resale. This document and its information is provided "AS IS" without warranty of any kind (express or implied). All statutory warranties and conditions are excluded to the fullest extent possible. No responsibility is assumed by Cirrus Logic for the use of information herein, including use of this information as the basis for manufacture or sale of any items, or for infringement of patents or other rights of third parties. Cirrus Logic, Cirrus, the Cirrus Logic logo design, SoundClear, ReTune, SilentSwitch, and WISCE are among the trademarks of Cirrus Logic. Other brand and product names may be trademarks or service marks of their respective owners.

Copyright © 2008–2016 Cirrus Logic, Inc. All rights reserved.

REVISION HISTORY

DATE	REV	DESCRIPTION OF CHANGES	PAGE	CHANGED BY
26/11/10	4.0	Electrical characteristics updated		CS
11/11/16	4.1	SPKAB_REF_SEL added to 'Registers By Address' section.	186	PH
		VMID soft-start descriptions updated, including requirement to reset soft-start circuit before re-enabling VMID.	145-146	
		Package Drawing updated to DM 60.D.	219	