- Characteristics of current vs. self heating and current vs. time

Test conditions:
Measurement in air flow and lead wires of $1.5 \mathrm{~mm}^{2}$

current $1_{0}[A]$
TCO variations for current-time based applications.

- Ordering and marking example

Marking

A10V type and execution
12005 Cosponse temperature $\left(120^{\circ} \mathrm{C}\right)$, tolerance $(\pm 5 \mathrm{~K})$ 049 date of manufacture (April 2009)
A12D type and execution
C country (C=Canada)
-123 customised type with drawing number
065 date of manufacture (June 2015)

Div. of Microtherm International Cooperation

Canadian Thermostats \& Control Devices, Ltd. 8415 Mountain Sights Ave. Montreal, Canada H4P 2B8
2015/AUG Subject to change without notice
1 (800) 561-7207
WEBSITE: www.cantherm.com

Technical data [standard types]

${ }^{1)}$ at the T_{a} (upper and lower) limits the hysteresis could deviate $\quad{ }^{2}$) without air flow ${ }^{3}$) different power rating $\quad{ }^{4}$) details on request

- Terminals

code	used in TCO	illustration	$\begin{gathered} \text { drawing } \\ \text { dimensions (} \mathrm{mm} \text {) } \end{gathered}$	technical specification	approvals
standard	A10, A11, A12, A13 A20, A21, A22, A23 A40, A41, A42, A43			terminals for soldering screwing, riveting or welding CuNi18Zn20 ${ }^{1}$	$\begin{gathered} \text { VDE, UL, } \\ \text { CSSA } \end{gathered}$
A321	A10, A12 ${ }_{A}{ }^{4020} 1232$ A40, A42			SMD terminals CuNi18Zn20 ${ }^{1)}$	VDE, UL
A322	A10, A12 A30, A32 A40, A42			THT terminals	VDE, UL

[^0]| тсо | | illustration | $\begin{gathered} \text { drawing } \\ \text { dimensions (mm) } \end{gathered}$ | technical specification | approvals |
| :---: | :---: | :---: | :---: | :---: | :---: |
| standard | current - time based ${ }^{1)}$ | | | | |
| A10V | A12V | | | base of thermosetting plastic | $\begin{aligned} & \text { VDE, UL, } \\ & \text { CSA } \end{aligned}$ |
| $\begin{aligned} & \text { A1V } \\ & \text { A21V } \\ & \text { A31V } \\ & \text { A41V } \end{aligned}$ | $\begin{aligned} & A 13 V \\ & A 23 V \\ & A 33 V \\ & A 43 V \end{aligned}$ | | | screw-on fixing base of thermosetting plastic | $\begin{aligned} & \text { VDE, UL, } \\ & \text { CSA } \end{aligned}$ |
| A2OV | A22V | | | manual reset base of thermosetting plastic possible srew-on fixing dimensions see abov | $\begin{aligned} & \text { VDE, UL, } \\ & \text { CSA } \end{aligned}$ |
| $\begin{aligned} & \mathrm{A} 30 \mathrm{~V} \\ & \mathrm{~A} 40 \mathrm{~V} \end{aligned}$ | $\begin{aligned} & \mathrm{A} 32 \mathrm{~V} \\ & \mathrm{~A} 2 \mathrm{~V} \end{aligned}$ | | | voltage maintained PTC 120 V or 230 V base of thermosetting plastic possible screw-on fixing dimensions see above | $\begin{aligned} & \text { VDE, UL, } \\ & \text { CSA } \end{aligned}$ |

${ }^{11}$) For current-time based types (execution D, J, K, L, M, P, R, V) the following information must be provided:

- DC or $A C$ voltage U_{N} in Volts.
- Continuous operating current I_{c} in Amps at which the switch must not respond.
- Current level I_{0} in Amps at which the switch must respond
- Response time t_{0} (in seconds \pm tolerance) within which the switch must respond after reaching l_{0}.
- Ambient temperatures which could be experienced both in normal operation and in switching conditions.
- Maximum current in Amps.

- For special applications version P is available with a very low self heating rate

- Version A10H is VDE approved with 100,000 cycles at 1 Amp and 30,000 cycles at 10 Amps also.
- Manual reset: The maximum operating force must not exceed 6 N . The control should not be reset before the starting conditions are reached, meaning there should be a satisfactory cooling down time!

Technical data on request.

[^0]: 1) P types have terminals of CuFe2P materia
