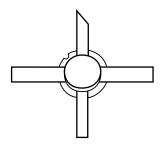
## MSA-0520

## Cascadable Silicon Bipolar MMIC Amplifier

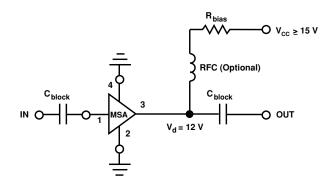


# **Data Sheet**

### Description


The MSA-0520 is a high performance silicon bipolar Monolithic Microwave Integrated Circuit (MMIC) housed in a hermetic, BeO disk package for good thermal characteristics. This MMIC is designed for use as a general purpose  $50\Omega$  gain block. Typical applications include narrow and broad band IF and RF amplifiers in industrial and military applications.

The MSA-series is fabricated using Avago's 10 GHz  $f_T$ , 25 GHz  $f_{MAX}$ , silicon bipolar MMIC process which uses nitride self-alignment, ion implantation, and gold metallization to achieve excellent performance, uniformity and reliability. The use of an external bias resistor for temperature and current stability also allows bias flexibility.


### **Features**

- Cascadable 50 Ω Gain Block
- High Output Power: +23 dBm Typical P<sub>1 dB</sub> at 1.0 GHz
- Low Distortion:
  33 dBm Typical IP<sub>3</sub> at 1.0 GHz
- 8.5 dB Typical Gain at 1.0 GHz
- Hermetic Metal/Beryllia Microstrip Package

### 200 mil BeO Package



### **Typical Biasing Configuration**



MSA-0520 Absolute Maximum Ratings

| Parameter                          | Absolute Maximum <sup>[1]</sup> |  |  |
|------------------------------------|---------------------------------|--|--|
| Device Current                     | 225 mA                          |  |  |
| Power Dissipation <sup>[2,3]</sup> | 3.0 W                           |  |  |
| RF Input Power                     | +25 dBm                         |  |  |
| Junction Temperature               | 200°C                           |  |  |
| Storage Temperature                | −65 to 200°C                    |  |  |

Thermal Resistance<sup>[2,4]</sup>:

 $\theta_{ic} = 25$ °C/W

- 1. Permanent damage may occur if any of these limits are exceeded.

- T<sub>CASE</sub> = 25°C.
  Derate at 40 mW/°C for T<sub>C</sub> > 125°C.
  The small spot size of this technique results in a higher, though more accurate determination of  $\theta_{jc}$  than do alternate methods.

# Electrical Specifications<sup>[1]</sup>, $T_A = 25^{\circ}C$

| Symbol             | Parameters and Test Conditions: $I_d = 165$ i | Units              | Min.  | Тур. | Max.  |      |  |
|--------------------|-----------------------------------------------|--------------------|-------|------|-------|------|--|
| P <sub>1 dB</sub>  | Output Power at 1 dB Gain Compression         | f = 1.0 GHz        | dBm   | 21.0 | 23.0  |      |  |
| G <sub>P</sub>     | Power Gain ( S <sub>21</sub>   <sup>2</sup> ) | f = 0.1 GHz        | dB    | 7.5  | 8.5   | 9.5  |  |
| $\DeltaG_P$        | Gain Flatness                                 | f = 0.1 to 2.0 GHz | dB    |      | ±0.75 |      |  |
| f <sub>3 dB</sub>  | 3 dB Bandwidth <sup>[2]</sup>                 |                    | GHz   |      | 2.8   |      |  |
| VCMD               | Input VSWR                                    | f = 0.1 to 2.0 GHz |       |      | 2.0:1 |      |  |
| VSWR —             | Output VSWR                                   | f = 0.1 to 2.0 GHz |       |      | 2.5:1 |      |  |
| IP <sub>3</sub>    | Third Order Intercept Point                   | f = 1.0 GHz        | dBm   |      | 33.0  |      |  |
| NF <sub>50 Ω</sub> | 50 Ω Noise Figure                             | f = 1.0 GHz        | dB    |      | 6.5   |      |  |
| t <sub>D</sub>     | Group Delay                                   | f = 1.0 GHz        | psec  |      | 170   |      |  |
| V <sub>d</sub>     | Device Voltage                                |                    | V     | 10.5 | 12.0  | 13.5 |  |
| dV/dT              | Device Voltage Temperature Coefficient        |                    | mV/°C |      | -16.0 |      |  |

- 1. The recommended operating current range for this device is 80 to 200 mA. Typical performance as a function of current is on the following page.
- 2. Referenced from 0.1 GHz Gain (GP).

## MSA-0520 Typical Scattering Parameters ( $T_A = 25^{\circ}C$ , $I_d = 165$ mA)

| Freq. | S-  | 11   |      | S <sub>21</sub> |     |       | S <sub>12</sub> |     | S   | 22   |      |
|-------|-----|------|------|-----------------|-----|-------|-----------------|-----|-----|------|------|
| MHz   | Mag | Ang  | dB   | Mag             | Ang | dB    | Mag             | Ang | Mag | Ang  | k    |
| 5     | .57 | -38  | 14.4 | 5.25            | 165 | -19.4 | .107            | 38  | .67 | -35  | 0.57 |
| 25    | .25 | -90  | 10.7 | 3.42            | 160 | -14.9 | .180            | 17  | .29 | -81  | 0.93 |
| 50    | .15 | -111 | 9.5  | 2.97            | 163 | -14.4 | .190            | 9   | .18 | -97  | 1.10 |
| 100   | .11 | -138 | 8.9  | 2.80            | 166 | -14.2 | .195            | 3   | .11 | -113 | 1.16 |
| 200   | .10 | -152 | 8.8  | 2.75            | 163 | -14.1 | .197            | 1   | .10 | -125 | 1.17 |
| 400   | .10 | -152 | 8.7  | 2.72            | 152 | -14.1 | .198            | -2  | .14 | -123 | 1.16 |
| 600   | .11 | -147 | 8.6  | 2.70            | 140 | -14.0 | .199            | -4  | .18 | -123 | 1.14 |
| 800   | .13 | -142 | 8.5  | 2.67            | 128 | -14.1 | .199            | -6  | .22 | -127 | 1.12 |
| 1000  | .15 | -140 | 8.4  | 2.64            | 115 | -14.1 | .198            | -8  | .27 | -131 | 1.09 |
| 1500  | .22 | -142 | 8.0  | 2.52            | 85  | -13.7 | .206            | -12 | .34 | -143 | 0.98 |
| 2000  | .30 | -156 | 7.4  | 2.36            | 55  | -13.3 | .216            | -16 | .43 | -158 | 0.85 |
| 2500  | .37 | -170 | 6.7  | 2.16            | 33  | -12.9 | .227            | -18 | .48 | -166 | 0.75 |
| 3000  | .41 | 170  | 5.6  | 1.91            | 8   | -12.7 | .232            | -23 | .51 | -177 | 0.70 |
| 3500  | .45 | 149  | 4.5  | 1.68            | -16 | -12.1 | .249            | -31 | .55 | 173  | 0.63 |
| 4000  | .46 | 124  | 3.3  | 1.45            | -40 | -11.7 | .259            | -39 | .56 | 162  | 0.66 |

## Typical Performance, $T_A = 25^{\circ}C$

(unless otherwise noted)

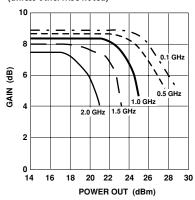



Figure 1. Typical Gain vs. Power Out,  $T_A = 25^{\circ}\text{C}$ ,  $I_d = 165 \text{ mA}$ .

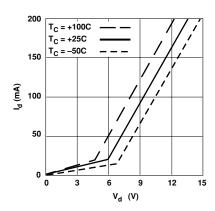



Figure 2. Device Current vs. Voltage.

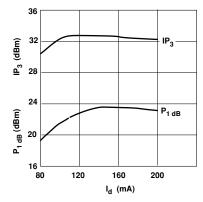



Figure 3. Output Power at 1 dB Gain Compression, Third Order Intercept vs. Current, f = 1.0 GHz.

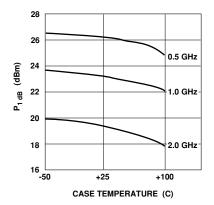



Figure 4. Output Power @ 1 dB Gain Compression vs. Temperature,  $I_{\rm d}=$  165 mA.

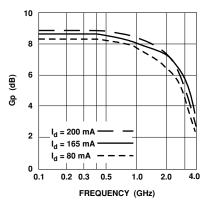



Figure 5. Gain vs. Frequency.

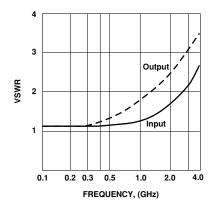
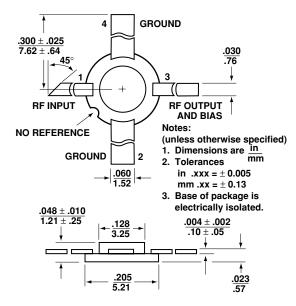




Figure 6. VSWR vs. Frequency,  $I_d=165\ mA$ .

## **Ordering Information**

| Part Numbers | No. of Devices | Comments |
|--------------|----------------|----------|
| MSA-0520     | 100            | Bulk     |

### 200 mil BeO Package Dimensions

