HSMS-286Y

Microwave Schottky Detector Diodes In Surface Mount SOD-523 Package

Data Sheet

Description/Applications

The HSMS-286Y of Avago Technologies is a DC biased detector Diode that designed and optimized for use from 915MHz to 5.8GHz. They are ideal for RF/ID and RF Tag applications as well as large signal detection, modulation, RF to DC conversion or voltage doubling.

The device is housed in a miniature low cost surface mount SOD-523 package. This miniature package is particularly useful in the application where board space is the major concern.

Table 1. Absolute Maximum Ratings [1] at Tc = +25°C

Symbol	Parameter	Unit	Max Rating
P _{IV}	Peak Inverse Voltage	V	4
T,	Junction Temperature	°C	150
T _{STG}	Storage Temperature	°C	-65 to 150
T _{OP}	Storage Temperature	°C	-65 to 150
θjb	Thermal Resistance ^[2]	°C/W	175

Notes:

- 1. Operation in excess of any one of these conditions may result in permanent damage to the device.
- Thermal Resistance is measured from junction to board using IR method.

Features

- Space saving SOD-523 package
- High Detection Sensitivity
 Up to 50 mW/uW at 915 MHz
 Up to 35 mW/uW at 2.45 GHz
 Up to 25 mW/uW at 5.80 GHz
- Tape and Reel Options Available
- MSL 1 & Lead Free

Package Marking and Pin Connections

Note: Package marking provides orientation and identification

"P" = Device Code

"?" = Month code indicates the month of manufacture

Attention: Observe precautions for handling electrostatic sensitive devices.

ESD Machine Model < 30V

ESD Human Body Model =50 V

Table 2. Electrical Specifications at Tc = +25°C

	Forward Vol	tage V _F (mV)	Typical Capacitance C_T (pF)	
	250 Min	350 Max	0.30	
Test Conditions	$I_F = 1.0 \text{ mA}$	$I_F = 1.0 \text{ mA}$	$V_R = 0V$, $f = 1MHz$	

Table 3. RF Electrical Specifications, Tc = +25°C

	Typical Tangential Sensitivity TSS (dBm) @ f =			Typical Voltage Sensitivity (mV/μW) @ f =		Typical Video Resistance RV (K Ω)	
	915 MHz	2.45 GHz	5.8 GHz	915 MHz	2.45 GHz	5.8 GHz	
	-57	-56	-55	50	35	25	5.0
Test Conditions	Video Bandwidth = 2 MHz $I_b = 5 \mu A$			Power in = - 40 dBm RL = 100 KΩ, lb = 5 μ A		Ib = 5 μA	

Typical Performance Curves at Tc = +25°C



Figure 1. Forward Current vs. Forward Voltage at Temperature

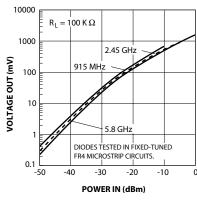


Figure 2. +25°C Output Voltage vs. Input Power, 3uA Bias

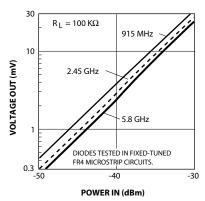


Figure 3. +25°C Expanded Output Voltage vs. Input Power.

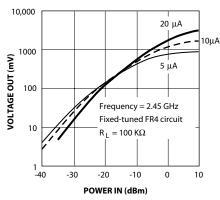


Figure 4. Dynamic Transfer Characteristic as a function of DC Bias

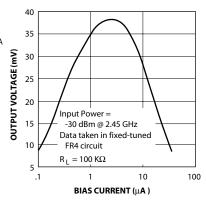
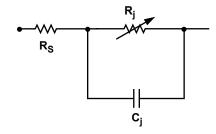



Figure 5. Voltage Sensitivity as a Function of DC Bias Current

Equivalent Linear Circuit Model, Diode chip

R_S = series resistance (see Table of SPICE parameters)

C_i = junction capacitance (see Table of SPICE parameters)

$$R_{j} = \frac{8.33 \times 10^{-5} \text{ nT}}{I_{b} + I_{s}}$$

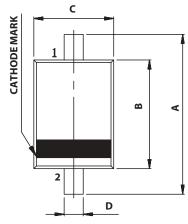
where

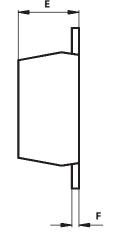
I_b = externally applied bias current in amps

 I_s = saturation current (see table of SPICE parameters)

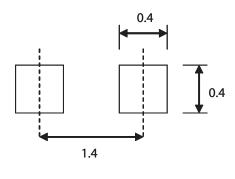
T = temperature, K

n = ideality factor (see table of SPICE parameters)


Note:

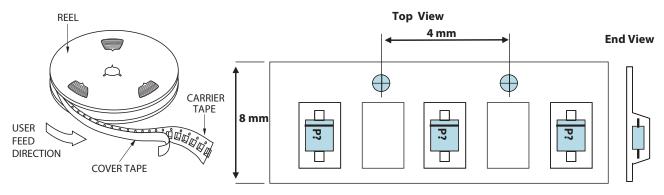

To effectively model the packaged HSMS-286x product, please refer to Application Note AN1124.

SPICE Parameters

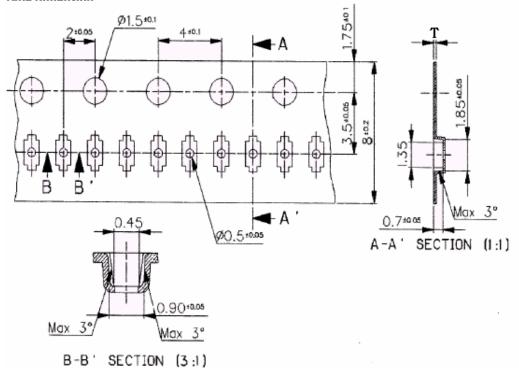

Parameter	Units	Value
B _V	V	7.0
C _{J0}	pF	0.18
E _G	eV	0.69
I _{BV}	A	1E - 5
Is	А	5E -8
N		1.08
R _S	Ω	6.0
P _B (VJ)	V	0.65
P _T (XTI)		2
М		0.5

Package Outline and Dimension

PCB Footprint



Unit:mm


Г		1
		1
	Ь	1
_		

DIM	MILLIMETERS		
Α	1.60 ± 0.10		
В	1.20 ± 0.10		
С	0.80 ± 0.10		
D	0.30 ± 0.05		
E	0.60 ± 0.10		
F	0.13 ± 0.05		

Device Orientation

Tana Nimancian

Specification < Unit : mm >

hole pitch : 50 Pitch Tolerance : 200 \pm 0.3

General Tolerance : \pm 0.1

Surface resistance: 104 ~ 108 W/cm3

Part Number Ordering Information

Part number	No. of Units	Container
HSMS-286Y-BLKG	100	Anti-static bag
HSMS-286Y-TR1G	3000	7" reel

For product information and a complete list of distributors, please go to our web site:

www.avagotech.com

Avago, Avago Technologies, and the A logo are trademarks of Avago Technologies, Limited in the United States and other countries. Data subject to change. Copyright © 2006 Avago Technologies Limited. All rights reserved. Obsoletes AV01-0201EN AV01-0691EN - December 21, 2006

