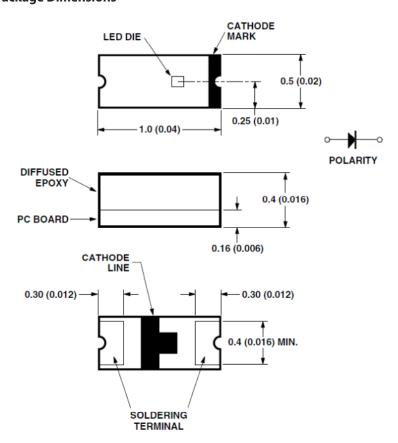

HSMR-C280

Miniature ChipLED

Data Sheet

Applications


Backlighting

Indicator

Features

- LED with InGaN die
- Surface mount device 0402 footprint
- PCB package
- Compatible with reflow soldering
- Tape in 8mm carrier tape on a 7 inch diameter reel

Package Dimensions

Note:

- 1. All dimensions are in millimeters (inches).
- 2. Tolerance ±0.1mm (±0.004in) unless otherwise specified.

Caution: LEDs are ESD sensitive device. Please observe appropriate precautions during handling and processing.

Absolute Maximum Value at $T_A = 25$ °C

Parameter	InGaN Blue	Unit	
Forward Current ¹	20	mA	
Peak Pulsing Current ²	100	mA	
Power Dissipation	78	mW	
LED Junction Temperature	95	°C	
Operating Temperature Range	-30 to 85	°C	
Storage Temperature Range	-40 to 85	°C	

Note:

- 1. Derate as shown in Figure 5.
- 2. Pulse condition of 1/10 duty and 0.1ms width.

Optical Characteristics at $T_A = 25$ °C, $I_F = 20$ mA

Color	Luminous lv (mcd)¹	Luminous Intensity Iv (mcd) ¹		Dominant Wavelength λd(nm) ²	Viewing Angle 2θ1/2³
	Min	Тур	Тур	Тур	Тур
Blue	28.5	80.0	459	465	130

Note:

- 1. The luminous intensity is measured at the peak of the spatial radiation pattern which may not be aligned with the mechanical axis of the lamp package.
- 2. The dominant wavelength is derived from the CIE Chromaticity Diagram and represents the perceived color of the device.
- 3. Viewing angle is the off axis angle where the luminous intensity is ½ the peak intensity.

Electrical Characteristics at $T_A = 25$ °C, I_F =20mA

Color	Forward Vol	Forward Voltage Vf (V) ¹		Thermal Resistance	
			Vr(V) @lr=100μA²	Rthj-pin(°C/W)	
	Min	Max	Min	Тур	
Blue	2.7	3.9	5	300	

Note:

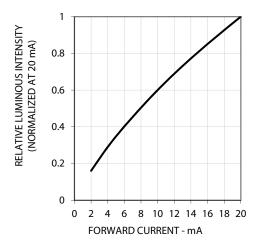
- 1. Forward voltage tolerance is ± 0.1 V.
- 2. Reverse voltage Indicates product final testing, long terms reverse bias is not recommended.

Luminous Intensity Bin Limits

Bin ID	Luminous Intensity (mcd)		
	Min	Max	
N	28.5	45.0	
Р	45.0	71.5	
Q	71.5	112.5	
R	112.5	180.0	
S	180.0	285.0	
Т	285.0	450.0	
U	450.0	715.0	
V	715.0	1125.0	
W	1125.0	1800.0	
Χ	1800.0	2850.0	
Υ	2850.0	4500.0	

Tolerance ±15%

Blue Color Bin Limits


Bin ID	Dominant Wavelength (nm)		
	Min	Max	
A	460	465	
В	465	470	
С	470	475	
D	475	480	

Tolerance ±1nm

Forward Voltage Bin Limits

Bin ID	Forward Voltage (V)	Forward Voltage (V)		
	Min	Max		
Z	2.7	2.9		
1	2.9	3.1		
2	3.1	3.3		
3	3.3	3.5		
4	3.5	3.7		
5	3.7	3.9		

Tolerance ±0.1V

20

Figure 1. Luminous Intensity vs Forward Current

Figure 2. Forward Current vs Forward Voltage

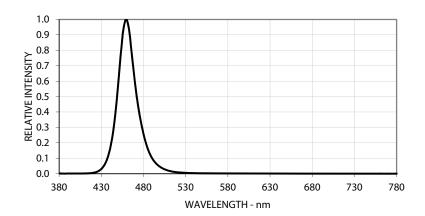


Figure 3. Spectrum

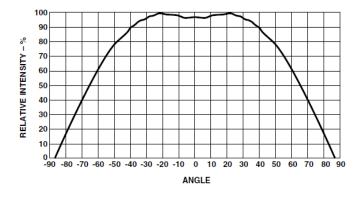
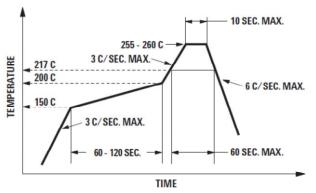


Figure 4. Radiation pattern

Figure 5. Derating curve



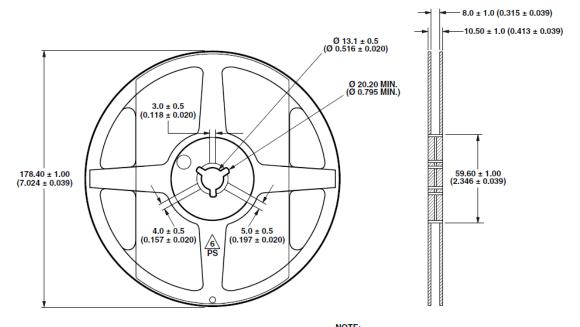


Figure 6. Recommended Pb free reflow solder profile

Figure 7. Recommended solder pad

Figure 8. Reel orientation

NOTE:
1. ALL DIMENSIONS IN MILLIMETERS (INCHES).

Figure 9. Reel dimensions

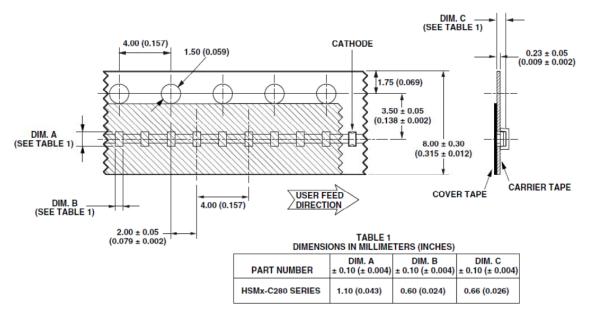


Figure 10. Tape dimensions

PRECAUTIONARY NOTES

1. Handling of moisture sensitive device

This product has a Moisture Sensitive Level 2a rating per JEDEC J-STD-020. Refer to Avago Application Note AN5305, *Handling of Moisture Sensitive Surface Mount Devices, for* additional details and a review of proper handling procedures.

(a) Before use

- An unopened moisture barrier bag (MBB) can be stored at <40°C/90%RH for 12 months. If the actual shelf life has exceeded 12 months and the humidity Indicator Card (HIC) indicates that baking is not required, then it is safe to reflow the LEDs per the original MSL rating.
- It is recommended that the MBB not be opened prior to assembly (e.g. for IQC).

(b) Control after opening the MBB

- The humidity indicator card (HIC) shall be read immediately upon opening of MBB.
- The LEDs must be kept at <30°C / 60%RH at all times and all high temperature related processes including soldering, curing or rework need to be completed within 672 hours.

(c) Control for unfinished reel

- Unused LEDs must be stored in a sealed MBB with desiccant or desiccator at <5%RH.

(d) Control of assembled boards

- If the PCB soldered with the LEDs is to be subjected to other high temperature processes, the PCB need to be stored in sealed MBB with desiccant or desiccator at <5%RH to ensure that all LEDs have not exceeded their floor life of 672 hours.

(e) Baking is required if:

- The HIC indicator is not blue at 10% and is pink at 5%.
- The LEDs are exposed to condition of >30°C / 60% RH at any time.
- The LED floor life exceeded 672hrs.

The recommended baking condition is: 60±5°C for 20hrs

Baking should only be done once.

Disclaimer

Avago's products are not specifically designed, manufactured or authorized for sale as parts, components or assemblies for the planning, construction, maintenance or direct operation of a nuclear facility or for use in medical devices or applications. Customer is solely responsible, and waives all rights to make claims against Avago or its suppliers, for all loss, damage, expense or liability in connection with such use.

For product information and a complete list of distributors, please go to our website: www.avagotech.com Avago, Avago Technologies, and the A logo are trademarks of Avago Technologies in the United States and other countries. Data subject to change. Copyright © 2005-2014 Avago Technologies. All rights reserved.