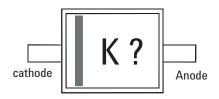
HSMP-381Z Low Distortion Attenuator RF PIN Diodes In Surface Mount SOD-323 Package

Data Sheet


Description/Applications

Avago Technologies' HSMP-381Z is designed for low distortion attenuator applications. It is housed in a low cost, industrial standard surface mount package - SOD-323. This package offers customers who already use them in SOT-23 and SOT-323 packages, a logical transition to a smaller package outline to accommodate end product design with limited board space.

The HSMP-381Z has low distortion and high IP3 characteristics. The device can operate in microwave frequencies and suitable to be used as attenuating circuits in Infrastructure and CATV applications.

A SPICE model is not available for PIN diodes as SPICE does not provide for a key PIN diode characteristic -- carrier lifetime.

Package Marking and Pin Connections

Note:

Package marking provides orientation and identification

"K" = Device Code

"?" = Month code indicates the month of manufacture

Features

- 2 Leads Surface Mount Package
- Low Distortion Attenuating
- Microwave Frequency Operation
- Tape and Reel Options Available
- Low Failure in Time (FIT) Rate
- MSL1 & Lead Free

Table 1. Absolute Maximum Ratings $^{[1]}$ at Tc = +25°C

Parameter	Unit	Max Rating
Forward Current (1 µs Pulse)	Amp	1
Peak Inverse Voltage	V	100
Junction Temperature	°C	150
Storage Temperature	°C	-60 to 150
Thermal Resistance [2]	°C/W	135
	Peak Inverse Voltage Junction Temperature Storage Temperature	Peak Inverse VoltageVJunction Temperature°CStorage Temperature°C

Notes:

Operation in excess of any one of these conditions may result in permanent damage to the device.
Thermal Resistance is measured from junction to board using IR method.

Table 2. Electrical Specifications at $Tc = +25^{\circ}C$

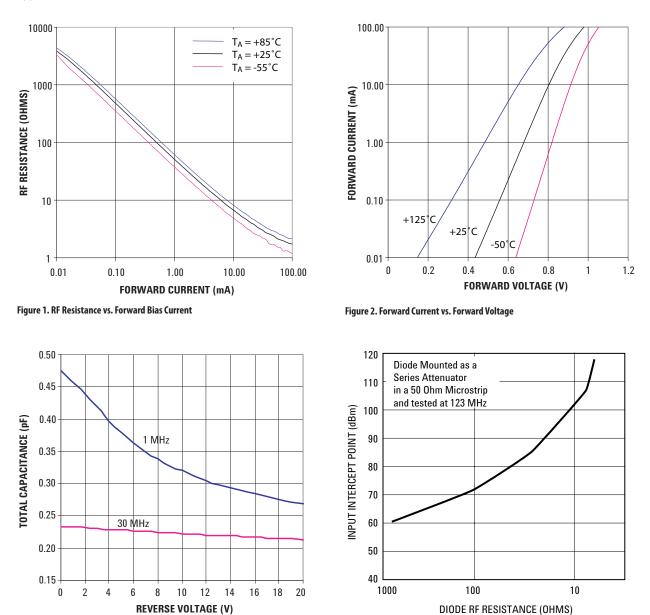
	Minimum Breakdown Voltage V _{BR} (V)	Maximum Total Capacitance C _T (pF)	Minimum Resistance at I _F = 0.01mA, R _H (Ω)	Maximum Resistance at I _F = 20mA, R _L (Ω)	Maximum Resistance at I _F = 100mA, R _T (Ω)	Resistance at I _F = 1mA, R _M (Ω)
	100	0.35	1500	10	3.0	48 to 70
Test Conditions	$V_R = V_{BR}$ Measure $I_R \le 10$ uA	$V_R = 50V$ f = 1MHz	$I_F = 0.01 \text{mA}$ f = 100MHz	$I_F = 20 \text{mA}$ f = 100MHz	$I_F = 100 \text{mA}$ f = 100MHz	IF = 1mA f = 100MHz

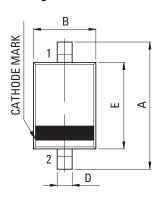
Note : Rs parameters are tested under AQL 1.0

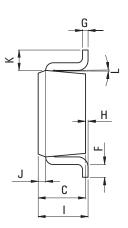
Table 3. Typical Parameters at $Tc = +25^{\circ}C$

	Carrier Lifetime $ au$ (ns)	Reverse Recovery Time T _{rr} (ns)	Total Capacitance C _T (pF)
	1500	300	0.27
Test Conditions	$I_F = 50 \text{mA}$ $I_R = 250 \text{mA}$	$V_R = 10V$ $I_F = 20mA$ 90% Recovery	$V_R = 50V$ f = 1MHz

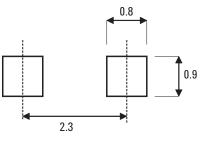
Typical Performance Curves at $Tc = +25^{\circ}C$



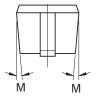

Figure 3. RF Capacitance vs. Reverse Bias


Figure 4. 2nd Harmonic Input Intercept Point vs. Diode RF Resistance

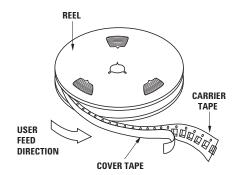
Note:

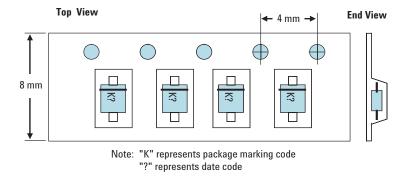

3. Typical values were derived using limited samples during initial product characterization and may not be representative of the overall distribution.

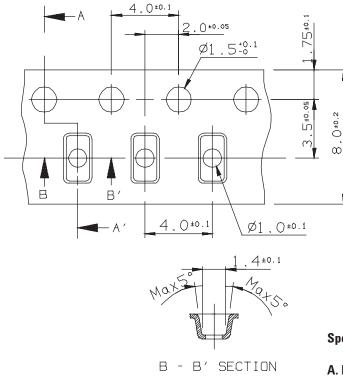
Package Outline and Dimension



PCB Footprint




Dimension in mm


DIM	MILLIMETERS	
А	2.50 ± 0.2	
В	1.25 ± 0.05	
С	0.90 ± 0.05	
D	0.30+0.06/-0.04	
Е	1.70±0.05	
F	MIN 0.17	
G	0.126±0.03	
Н	0~0.1	
Ι	1.0 MAX	
J	0.15±0.05	
K	0.4	
L	2°+4/-2	
M4	~6°	

Device Orientation

Tape Dimensions

0.25±0.02

A - A' SECTION

Specification < Unit: mm >

A. hole pitch : 50 Pitch Tolerance : 200 \pm 0.3

Part Number Ordering Information

Part number	No. of Units	Container
HSMP-381Z-BLKG	100	Anti-static bag
HSMP-381Z-TR1G	3000	7" reel

For product information and a complete list of distributors, please go to our web site:

www.avagotech.com

Avago, Avago Technologies, and the A logo are trademarks of Avago Technologies, Limited in the United States and other countries. Data subject to change. Copyright © 2006 Avago Technologies Limited. All rights reserved. Obsoletes AV01-0331EN AV02-0406 - July 31, 2007

