Data Sheet

Description

The APDS-9103 is a low cost, integrated module consisting of an infrared LED and a phototransistor in a single integrated package. It is capable of supporting detection distance from near 0 to 10mm. APDS-9103 is specially targeted at office automation products such as printers and fax and optoelectronic switches as well.

Application Support Information

The Application Engineering Group is available to assist you with the application design associated with APDS-9103. You can contact them through your local sales representatives for additional details

Ordering Information

Part Number	Package	Quantity	
APDS-9103-L22	4 pin leads	2500	

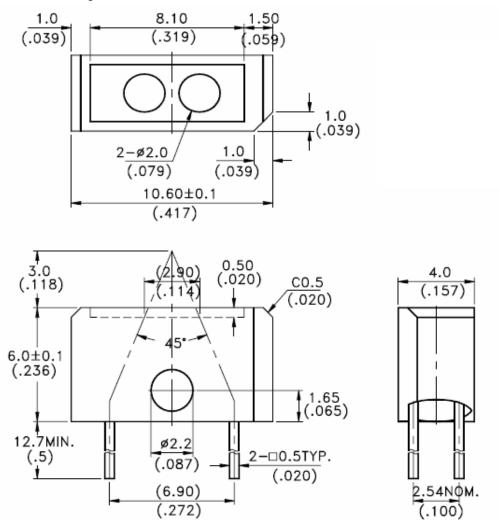
Features

- Package size
 Height 6 mm
 Width 4 mm
 Depth 10.6 mm
- Detection range of near 0mm to 10mm
- Operating temperature : -25°C to 85°C
- Lead-free and RoHS Compliant

Applications

APDS-9103 is widely suitable to provide reflective object or proximity sensing in industrial, office automation and consumer markets

- Industrial Automatic vending machines, amusement/ gaming machines, coin/bill validators etc
- Office automation Printers, Copiers etc
- Consumer Coffee machines, beverage dispensing machines etc

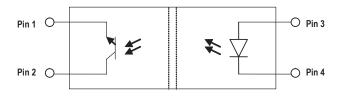

Absolute Maximum Ratings (Ta=25°C)

Parameter	Symbol	Max Rating	Unit	
Input Diode				
Power Dissipation	PD	75	mW	
Peak Forward Current (300pps, 10 μs pulse)	I _{CP}	1	А	
Continuous Forward Current	IF	60	mA	
Reverse Voltage	V _R	5	V	
Output Phototransistor Power Dissipation	Рс	100	mW	
Collector-Emitter Voltage	V _{CEO}	30	V	
Emitter-Collector Voltage	V _{ECO}	5	V	
Collector Current	lc	20	mA	
Operating Temperature Range	T _{OP}		-25°C to +85°C	
Storage Temperature Range	T _{STG}		-40°C to +100°C	
Lead Soldering Termperature (1.6mm(0.063 ″) Form Case)	Ts		260°C for 5 seconds	

Electrical / Optical Characteristics (Ta=25°C)

Parameter	Symbol	Min.	Тур.	Max.	Unit	Test Condition	
Input Diode							
Forward Voltage	V _F		1.2	1.6	V	I _F =20mA	
Reverse Current	I _R			100	μA	$V_{R} = 5V$	
Output Phototransistor							
Collector-Emitter Dark Current	I _{CEO}			100	nA	V _{CE} = 10V	
Coupler							
Collector-Emitter Saturation Voltage	V _{CE(SAT)}			0.4	V	IC= 0.05mA IF= 20mA	
On State Collector Current	I _{C(ON)}	100		300	μΑ	V _{CE} =5V	BIN A
	I _{C(ON)}	260		650	μA	I _F = 20mA	BIN B
	I _{C(ON)}	400		1200	μA	D = 3.0mm	BIN C
Response Time (Rise Time)	T _R		3	15	μs	$V_{CE} = 5V$	
Response Time(Fall Time)	T _F		4	20	μs	$I_C = 2mA$ $R_L = 100\Omega$	

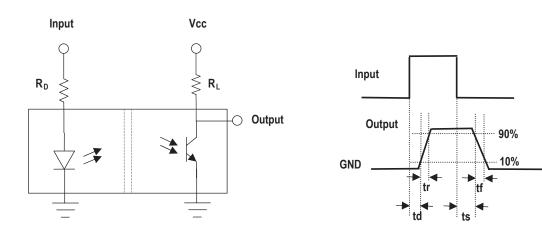
APDS-9103 Package Outline



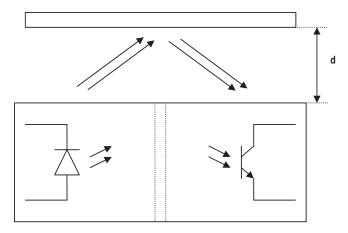
NOTES:

1. All dimensions are in millimeters(inches)

2. Tolerance is \pm 0.25mm(0.010") unless otherwise noted



I/O Pins Configuration Table


The electrical pin assignments are depicted in the below table.

Pin	Function	Description
1	Emitter	Phototransistor Emitter
2	Collector	Phototransistor Collector
3	Anode	LED Anode
4	Cathode	LED Cathode

Test Circuit and Waveforms

90% Reflectance White Paper

Typical Electrical/Optical Characteristics Curves (Ta=25°C unless otherwise indicated)

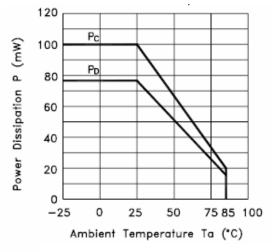


Figure 1. Power Dissipation vs. Ambient Temperature

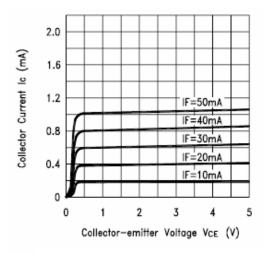


Figure 3. Collector Current vs. Collector-emitter Voltage

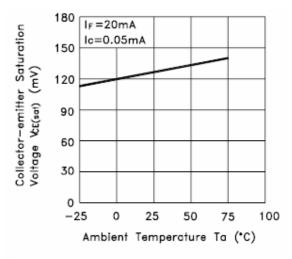


Figure 5. Collector-emitter Saturation Voltage vs. Ambient Temperature

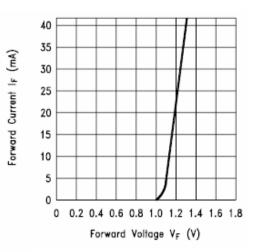


Figure 2. Forward Current vs. Forward Voltage

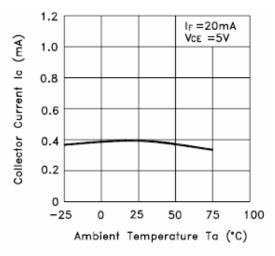


Figure 4. Collector Current vs. Ambient Temperature

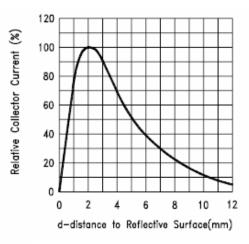


Figure 6. Relative Collector Current vs. Object Distance

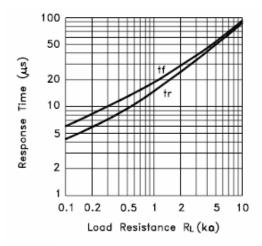


Figure 7. Response Time vs. Load Resistance

For product information and a complete list of distributors, please go to our web site: www.avagotech.com

Avago, Avago Technologies, and the A logo are trademarks of Avago Technologies, Limited in the United States and other countries. Data subject to change. Copyright © 2007 Avago Technologies Limited. All rights reserved. AV02-0007EN - January 22, 2007

