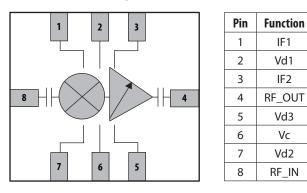

AMGP-6551

40.5 – 43.5 GHz SMT Packaged Up-Converter



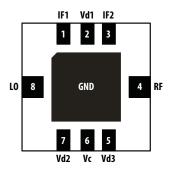
Description

The AMGP-6551 is a surface mount packaged broadband Up-converter that combines a sub-harmonic, SSB mixer with a variable gain amplifier. It is designed for use at frequencies between 37.5 GHz and 43.5 GHz and provides 10 dB of conversion gain with >20 dB gain control dynamic range. This Up-converter required +20 dBm LO drive level, and it supports IF from DC to 3 GHz. OIP3 of +20 and +16 dBm are achieved at 40.5 and 43.5 GHz respectively.

Functional Block Diagram

Attention: Observe Precautions for handling electrostatic sensitive devices. ESD Machine Model: 30 V ESD Human Body Model: 150 V Refer to Avago Application Note A004R: Electrostatic Discharge Damage and Control.

Vc


Features

- 5 x 5 mm surface mount package
- RF frequency range from 40.5 to 43.5 GHz
- LO frequency range from 18.5 to 23.5 GHz
- IF frequency range from DC to 3 GHz
- +20 dBm LO driver power
- 10 dB Conversion Gain
- 20 dB Dynamic Range
- +20 dBm Output IP3 @ 40.5 GHz, and +16 dBm @ 43.5 GHz
- Vdd = 3.5 V and Idd = 300 mA
- 1 to 0 V Control voltage (Vc)

Application

• Microwave Radio Systems

Package Diagram

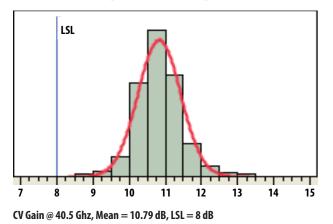
ELECTRICAL SPECIFICATIONS

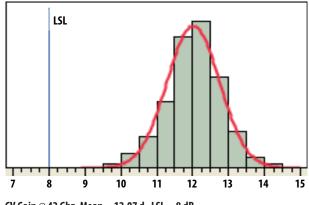
Table 1. Absolute Minimum and Maximum Ratings

Parameter		Specificati	ons			
Description		Min.	Max.	Unit	Comments	
Supply Voltage	Vd		5	V		
Control Voltage	Vc	-3	+1.5	V		
LO Input Power	LO		24	dBm		
MSL			MSL2A			
Channel Temperature			150	°C		
Storage Temperature		-45	150	°C		

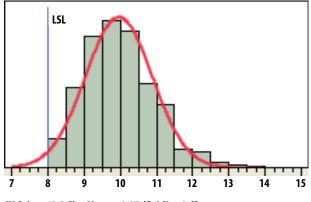
Table 2. Recommended Operating Range

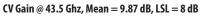
Parameter		Specifica	tions				
Descrip	tion	Pin	Min.	Typical	Max.	Unit	Comments
Supply	/ Voltage	Vd	3.0	3.5	4.0	V	
Contro	ol Voltage	Vc	-1		0	V	Vc = -1 V for Max. Gain Vc = 0 V for Min. Gain
Freque	ency Range	RF	40.5		43.5	GHz	
		LO	18.5		23.5		
		IF	DC		3		
LO Pov	ver		+18	+20	+22	dBm	
Bias Cu	urrent			300		mA	
Therm	al Resistance, θ_{ch-b}			18.8		°C/W	
Case Te	emperature		-40		+85	°C	
ESD	Human Body Model			150		V	HBM Class 0 is ESD < 250 V
	Machine Model			< 30		V	MM Class A is ESD < 200 V This product is highly sensitive to esd damage

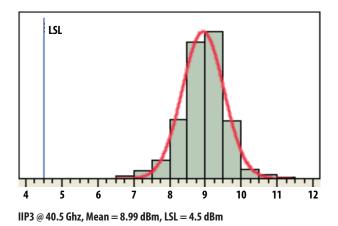

Table 3. RF Electrical Characteristics

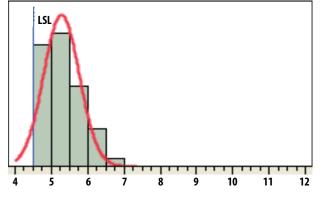

All data measured on Connectorized Taconic RF-35A2 demo board at Vd = 5 V, $T_A = 25^{\circ}$ C, IF = 1.8 GHz @ -10 dBm, LO = +20 dBm, Upper Side Band (RF = IF + 2*LO) and 50 Ω at all ports, unless otherwise specified.

Return Loss measurement includes effect of connector + PCB.

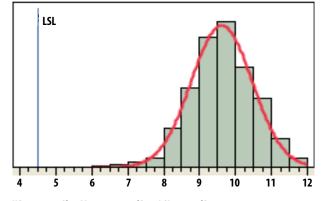

	Performance (40.5 – 43.5 GHz)						
Parameter		Min.	Typ. Max.		Unit	Comments	
Max. Conversion Gain	RF = 40.5 GHz	8	10.79		dB	(@ Vc = -1 V)	
	RF = 42 GHz		12.07				
	RF = 43.5 GHz		9.87				
Gain Dynamic Range			24		dB		
Input IP3	RF = 40.5 GHz	+4.5	8.99		dBm	Δ IF = 10 MHz,	
	RF = 42 GHz		5.18			IF Input -10 dBm/Tone	
	RF = 43.5 GHz		9.59				
Sideband REjection			15		dBc	In max gain state	
LO-RF Isolation			15		dB		
2*LO Leak. @RF Port			10		dBc		
RF Return Loss			12		dB		
IF Return Loss			12		dB		
LO Return Loss			8		dB		


Product Consistency Distribution Charts at 40.5 GHz, 42 GHz and 43.5 GHz, Vdd = 5 V, VC = -1 V, L0 = 21 dBm, IF = -5 dBm (Sample size of 2,000 pieces)

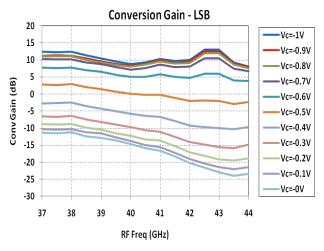




CV Gain @ 42 Ghz, Mean = 12.07 d , LSL = 8 dB



IIP3 @ 42 Ghz, Mean = 5.18 dBm, LSL = 4.5 dBm



IIP3 @ 43.5 Ghz, Mean = 9.59 dBm, LSL = 4.5 dBm

Selected performance plots

All data measured on Connectorized Taconic RF-35A2 demo board at Vd = 5 V, $T_A = 25^{\circ}$ C, IF = 1.8 GHz @ -10 dBm, LO = +20 dBm, Upper Side Band (RF = IF + 2*LO) and 50 Ω at all ports, unless otherwise specified.

Return Loss measurement includes effect of connector + PCB.

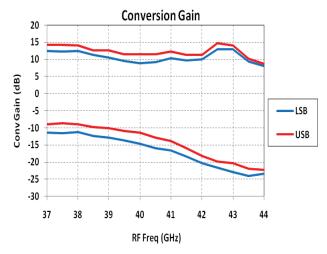


Figure 3. Conversion Gain (max and min gain)

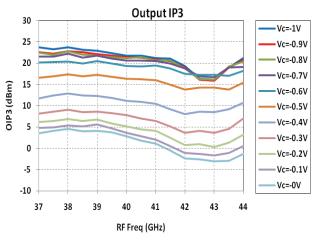


Figure 5. LSB Output IP3 vs Control Voltage

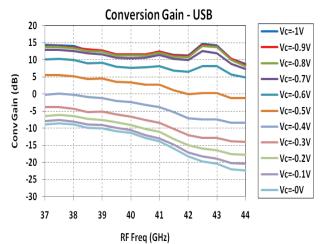
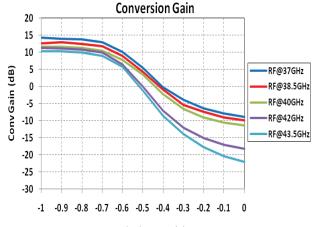
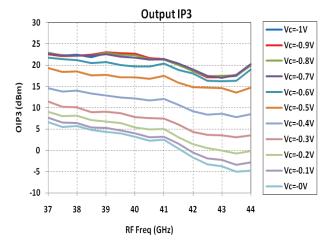




Figure 2. USB Conversion Gain vs Control Voltage

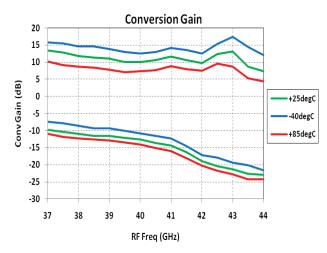
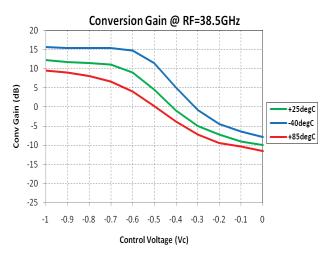
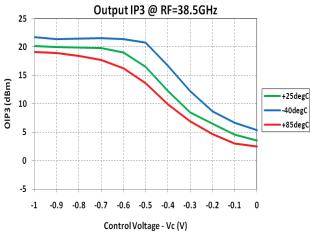
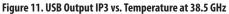
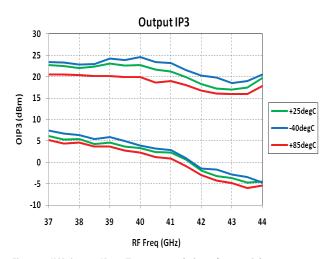
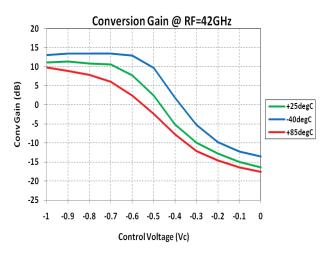
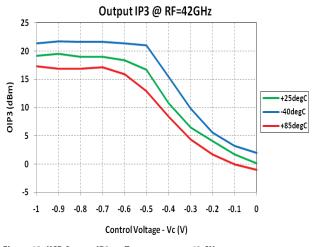
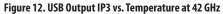


Figure 7. USB Conversion Gain vs Temperature (min and max gain)


Figure 9. USB Conversion Gain vs. Temperature at 38.5 GHz





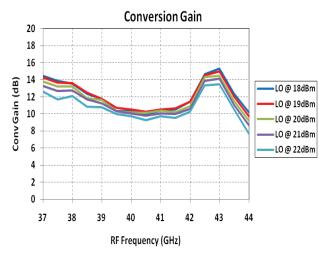
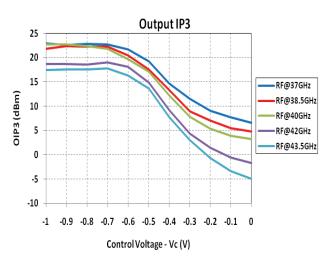
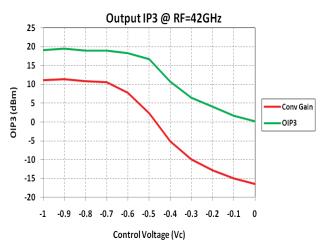




Figure 13. USB Conversion Gain @ LO = 18-22 dBm with Vc = -1 V

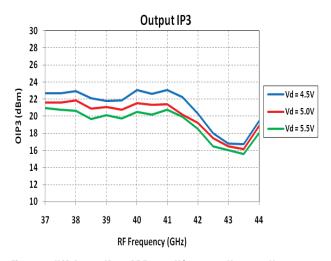


Figure 14. USB Output IP3 vs RF Freq. @ Vd = 4.5-5.5 V step 0,5 V

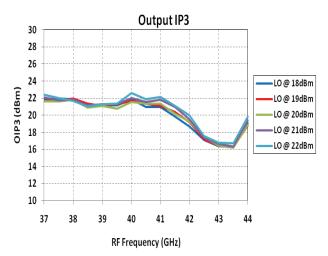


Figure 16. USB Output IP3 vs. RF Freq. @ LO = 18-22 dBm with Vc = -1 V

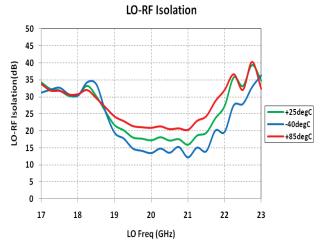
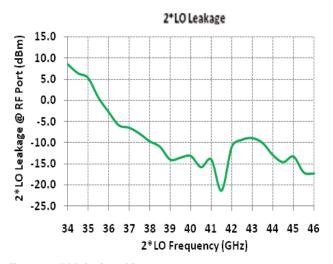
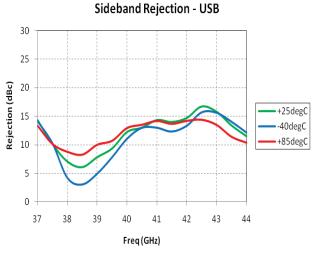




Figure 18. Over Temp. LO Rejection @ RF-port

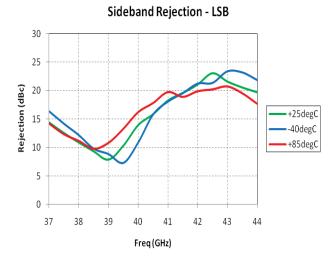


Figure 20. USB Sideband Rejection at 25° C

RF Return Loss

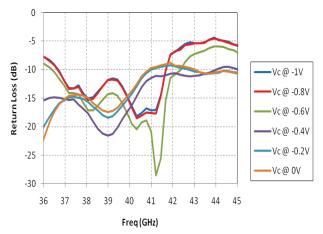


Figure 22. RF Output Return Loss vs. Control Voltage @ 25° C

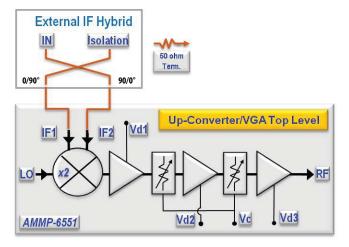

LO Return Loss

Figure 24. LO Input Return Loss with LO = +20 dBm

Figure 23. IF Input Return Loss vs. Frequency

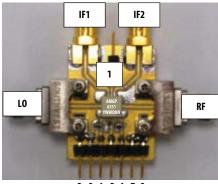

Evaluation Board Description

Table 4. Pin Description

Pin #	Function	Typical	Comment
1	Vd1	3.5	100 mA
2	GND		
3	GND		
4	Vd2	3.5	100 mA
5	Vc	-1 to 0 V	< 1 mA
б	Vd3	3.5	100 mA
7	GND		
8	GND		

Demo board circuit

2 3 4 5 6 7 8

Package Dimension, PCB Layout and Tape and Reel information

Please refer to Avago Technologies Application Note 5521, AMxP-xxxx production Assembly Process (Land Pattern B).

Notes:

- 1. IF can be applied to either IN or Isolation port of a passive Hybrid.
- 2. If IF is applied to IN port, terminate Isolation port with 50 ohm
- 3. If IF is applied to Isolation port, terminate IN port with 50 ohm
- 4. Switching the IF input from In port to Isolation port or vice versa RF can be switched to LSB or USB

Part Number Ordering Information

	Devices per		
Part Number	Container	Container	
AMGP-6551-BLKG	10	antistatic bag	
AMGP-6551-TR1G	100	7" Reel	
AMGP-6551-TR2G	500	7" Reel	

For product information and a complete list of distributors, please go to our web site: www.avagotech.com

Avago, Avago Technologies, and the A logo are trademarks of Avago Technologies in the United States and other countries. Data subject to change. Copyright © 2005-2012 Avago Technologies. All rights reserved. AV02-3211EN - May 10, 2012

