Data Sheet

Description

The ADNS-5700-XXXX is a compact, one chip USB optical mouse sensor for implementing a non-mechanical tracking engine for computer mice.

It is based on optical navigation technology that measures changes in position by optically acquiring sequential surface images (frames) and mathematically determining the direction and magnitude of movement.

The sensor is in a 18 -pin optical package that is designed to be used with the ADNS-5100-001 trim lens the ADNS5200 Clip and the HLMP-EG3E-xxxxx LED. These parts provide a complete and compact mouse sensor. There are no moving parts, and precision optical alignment is not required, facilitating high volume assembly.
The output format is USB. This device meets HID Revision 1.11 specification and is compatible with USB Revision 2.0 specification.
Frame rate is varied internally to the sensor to achieve tracking and speed performance, eliminating the need for the use of many registers.

Default resolution is specified as 1000 counts per inch, with rates of motion up to 30 inches per second. Buttons and tilt wheel features are also available.
A complete mouse can be built with the addition of a PC board, switches and mechanical Z-wheel, plastic case and cable.

Theory of Operation

The ADNS-5700-XXXX is based on Optical Navigation Technology. It contains an Image Acquisition System (IAS), a Digital Signal Processor (DSP) and USB stream output.
The IAS acquires microscopic surface images via the lens and illumination system provided by the ADNS-5100001 trim lens, ADNS-5200 clip and HLMP-EG3E-xxxxx LED. These images are processed by the DSP to determine the direction and distance of motion. The DSP generates the x and y relative displacement values which are converted to USB motion data.

Features

- Optical navigation technology
- Default resolution 1000 cpi , selectable resolution 800cpi or 1200cpi through different part number
- High speed motion detection up to 30 inches per second (ips) and acceleration of $8 g$
- Accurate navigation over a wide variety of surfaces
- No precision optical alignment needed
- Wave Solderable
- Single 5.0 volt power supply
- Meets USB Revision 2.0 specification
- Meets HID Revision 1.11
- Tilt Wheel function
- Optical or Mechanical Z-Wheel function
- 12bits motion reporting
- 2 axis sensor rotation $: 0^{\circ}$ or 270°

Applications

- Mice for desktop PC's, Workstations, and portable PC's
- Trackballs
- Integrated input devices

Pinout 18pin PDIP
ADNS-5700-XXXX

	3 button		$\mathbf{5}$ button
Pin Number	H3MB, H3NB	H4MB, H4NB	H5MD, H5ND
1	D +	D +	D +
2	D	D -	ZA
3	ZA	ZA	ZB
4	ZB	ZB	LED_GND
5	LED_GND	LED_GND	XY_LED
6	XY_LED	XY_LED	VDD5
7	VDD5	VDD5	GND
8	GND	GND	REG0
9	REG0	REG0	VDD3
10	VDD3	VDD3	B4
11	NC	TL	OSC_IN
12	NC	TR	GND
13	GND	GND	OSC_OUT
14	OSC_IN	OSC_IN	B3
15	OSC_OUT	OSC_OUT	B2
16	B3	B3	B1
17	B2	B2	B5
18	B1	B1	

Pin description table

Pin Name	Description
D +	USB D+ line
D -	USB D- line
ZA	ZA Optical wheel quadrature input
ZB	ZB Optical wheel quadrature input
LED_GND	LED ground
XY_LED	XY_LED Input
VDD5 $^{\text {GND }}$	5 Volt Power (USB VBUS)
GNED	System ground
REG0 / VDD3	Z-Wheel LED input
NC	3 Volt Power VDD3
OSC_IN	No Connect
OSC_OUT	Ceramic resonator input
B5	Ceramic resonator output
B4	Fourth Button
B3	Middle button input
B2	Right button input
B1	Left button input

Figure 1a. Package pinout
Note : See table for Part number marking

Strap (Jumper) Table

The PID/string strap matrix is the following:

Part Number	Description	Resolution (cpi)	Buttons	Tilt Wheel	Z-Wheel	Sensor Position	VID	PID	Mfg String	Product String
ADNS-5700-H3MB	Standard 3 buttons	1000	3	No	Mechanical	0°	0x192F	0×0416	Null	USB Optical Mouse
ADNS-5700-H4MB	Standard 3 buttons	1000	3	TW	Mechanical	0°	0x192F	0×0416	Null	USB Optical Mouse
ADNS-5700-H5MD	Standard 5 buttons	1000	5	No	Mechanical	0°	0x192F	0×0616	Null	USB Optical Mouse
ADNS-5700-H3NB	Standard 3 buttons	1000	3	No	Mechanical	270°	0x192F	0×0416	Null	USB Optical Mouse
ADNS-5700-H4NB	Standard 3 buttons	1000	3	TW	Mechanical	270°	0x192F	0×0416	Null	USB Optical Mouse
ADNS-5700-H5ND	Standard 5 buttons	1000	5	No	Mechanical	270°	0x192F	0x0616	Null	USB Optical Mouse

DISCLAIMER: ALL DESIGNERS AND MANUFACTURERS OF THIS DESIGN MUST ASSURE THAT THEY HAVE ALL NECESSARY INTELLECTUAL PROPERTY RIGHTS.

The XY motion reporting direction when is lens is attached to the sensor is shown in Fig 1 b for 0° and Fig 1 c for 270° sensor orientation.

Figure 1 b . Package pinout at 0°

Figure 1c. Package pinout at 270°

Figure 2. Package outline drawing

CAUTION: It is advised that normal static precautions be taken in handling and assembly of this component to prevent damage and/or degradation which may be induced by ESD.

Notes:

1. Dimensions in milimeter / inches and for reference only.

Figure 3. Recommended PCB mechanical cutouts and spacing (Top view)

Note: The recommended pin hole dimension of the sensor is 0.7 mm . Shown with ADNS-5100-001 trim lens, ADNS-5200 clip and HLMP-EG3E-xxxxx.

Avago Technologies provides an IGES file drawing describing the base plate molding features for lens and PCB alignment. Stand-off of the base plate shall not be larger than 5 mm .

Notes:

1. All dimensions in millimeters/inches.
2. All tolerance $\pm 0.1 \mathrm{~mm}$.

Figure 5. Exploded view drawing

The components interlock as they are mounted onto defined features on the base plate.

The ADNS-5700 sensor is designed for mounting on a through hole PCB, looking down. The aperture stop and features on the package align it to the lens (See figure 3).

The ADNS-5100-001 trim lens provides optics for the imaging of the surface as well as illumination of the surface at the optimum angle. Lens features align it to the sensor, base plate, and clip with the LED.

The ADNS-5200 clip holds the LED in relation to the lens. The LED must be inserted into the clip and the LED's leads formed prior to loading on the PCB. The clip interlocks the sensor to the lens, and through the lens to the alignment features on the base plate.

The HLMP-EG3E-xxxxx LED is recommended for illumination.

Block Diagram

Figure 6. Block Diagram

PCB Assembly Considerations

1. Insert the sensor and all other electrical components into PCB.
2. Bend the LED leads 90 degrees and then insert the LED into the assembly clip until the snap feature locks the LED base.
3. Insert the LED/clip assembly into PCB.
4. This sensor package is only qualified for wave-solder process.
5. Wave Solder the entire assembly in a no-wash solder process utilizing solder fixture. The solder fixture is needed to protect the sensor during the solder process. It also sets the correct sensor to PCB distance, as the lead shoulders do not normally rest on the PCB surface. The fixture should be designed to expose the sensor leads to solder while shielding the optical aperture from direct solder contact. A solder fixture MUST be used to set the correct sensor to PCB distance.
6. Place the lens onto the base plate.
7. Remove the protective Kapton tape from optical aperture of the sensor. Care must be taken to keep contaminants from entering the aperture. Recommend not placing the PCB facing up during the entire mouse assembly process. Recommend to hold the PCB first vertically for the Kapton removal process.
8. Insert PCB assembly over the lens onto base plate aligning post to retain PCB assembly. The sensor aperture ring should self-align to the lens.
9. The optical position reference for the PCB is set by the base plate and lens. Note that the PCB motion due to button presses must be minimized to maintain optical alignment.
10. Install mouse top case. There MUST be feature in the top case to press down onto the clip to ensure all components are interlocked to correct vertical height

Design considerations for improving ESD Performance

The table below shows typical values assuming base plate construction per the Avago Technologies supplied IGES file and ADNS-5100-001 trim lens. Stand-off of the base plate shall not be larger than 5 mm .

Typical Distance	ADNS-5100-001
Creepage	17.9 mm
Clearance	9.2 mm

Note that the lens material is polycarbonate or polystyrene HH30, therefore, cyanoacrylate based adhesives should not be used as they will cause lens material deformation

Figure 7. Typical Application

Figure 8a. Application Circuit with ADNS-5700-HxxB with Optical Z-Wheel

DISCLAIMER: ALL DESIGNERS AND MANUFACTURERS OF THIS DESIGN MUST ASSURE THAT THEY HAVE ALL NECESSARY INTELLECTUAL PROPERTY RIGHTS.

Notes:

- All caps (except C4) MUST be as close to the sensor pins as possible.
- C3 and C5 connected to pin 10 must be terminated at pin 13.
- Caps should be ceramic.
- Caps should have less than 5 nH of self inductance.
- Caps connected to V DD3 MUST have less than 0.2Ω ESR.
- 1.5 k resistor should be $\pm 1 \%$ tolerance.

Surface mount parts are recommended.

Figure 8b. Application Circuit with ADNS-5700-HxxB with Mechanical Z-Wheel

DISCLAIMER: ALL DESIGNERS AND MANUFACTURERS OF THIS DESIGN MUST ASSURE THAT THEY HAVE ALL NECESSARY INTELLECTUAL PROPERTY RIGHTS.

Notes:

- All caps (except C4) MUST be as close to the sensor pins as possible.
- C1 and C6 connected to pin 10 must be terminated at pin 13.
- C3 and C5 connected to pin 9 must be terminated at pin 8.
- Caps should be ceramic.
- Caps should have less than 5 nH of self inductance.
- Caps connected to V ${ }_{\text {DD3 }}$ MUST have less than 0.2Ω ESR.
- 1.5 k resistor should $\mathrm{be} \pm 1 \%$ tolerance.

Surface mount parts are recommended.

Figure 8c. Application Circuit with ADNS-5700-H5MD and ADNS-5700-H5ND with 5 Button and Mechanical Z-Wheel

DISCLAIMER: ALL DESIGNERS AND MANUFACTURERS OF THIS DESIGN MUST ASSURE THAT THEY HAVE ALL NECESSARY INTELLECTUAL PROPERTY RIGHTS.

Notes:

- All caps (except C4) MUST be as close to the sensor pins as possible.
- C1 and C6 connected to pin 10 must be terminated at pin 13.
- C3 and C5 connected to pin 9 must be terminated at pin 8.
- Caps should be ceramic.
- Caps should have less than 5 nH of self inductance.
- Caps connected to $V_{\text {DD3 }}$ MUST have less than 0.2Ω ESR.
- 1.5 k resistor should be $\pm 1 \%$ tolerance.

Regulatory Requirements

- Passes FCC B and worldwide analogous emission limits when assembled into a mouse with shielded cable and following Avago Technologies recommendations.
- Passes EN61000-4-4/IEC801-4 EFT tests when assembled into a mouse with shielded cable and following Avago Technologies recommendations.
- UL flammability level UL94 V-0.
- Provides sufficient ESD creepage/clearance distance to withstand discharge up to 15 kV when assembled into a mouse with lens according to usage instructions above.

Absolute Maximum Ratings

Parameter	Symbol	Minimum	Maximum	Units	Notes
Storage Temperature	T_{S}	-40	85	${ }^{\circ} \mathrm{C}$	
Operating Temperature	T_{A}	-15	55	${ }^{\circ} \mathrm{C}$	
Lead Solder Temp			260	${ }^{\circ} \mathrm{C}$	For 7 seconds, 1.6 mm below seating plane.
Supply Voltage	V_{DD}	-0.5	5.5	V	
ESD			2	kV	All pins, JESD22-A114
Input Voltage	V_{IN}	-0.5	$\mathrm{~V}_{\mathrm{DD}}+0.5$	V	All I/O pins except OSC_IN and OSC_OUT, D+, $\mathrm{D}-$
Input Voltage	V_{IN}	-1.0	4.6	V	$\mathrm{D}+, \mathrm{D}-, \mathrm{AC}$ waveform, see USB specification $(7.1 .1)$
Input Voltage	V_{IN}	-0.5	3.6	V	OSC_IN and OSC_OUT
Input Short Circuit Voltage	V_{SC}	0	$\mathrm{~V}_{\mathrm{DD}}$	V	$\mathrm{D}+, \mathrm{D}-$, see USB specification (7.1.1)

Recommended Operating Conditions

Parameter	Symbol	Minimum	Typical	Maximum	Units	Notes
Operating Temperature	$\mathrm{T}_{\text {A }}$	0		40	${ }^{\circ} \mathrm{C}$	
Power supply voltage	$V_{\text {DD }}$	4.25	5.0	5.25	Volts	For accurate navigation and proper USB operation
Power supply voltage	$\mathrm{V}_{\text {ddm }}$	4	5.0	5.25	Volts	Maintains communication to USB host and internal register contents.
Power supply rise time	$\mathrm{V}_{\text {RT }}$	0.003		100	ms	
Supply noise	V_{N}			100	mV	Peak to peak within 0-80 MHz bandwidth
Velocity	Vel		30		ips	
Acceleration	Acc			8	g	0.5g from Rest
Clock Frequency	$\mathrm{f}_{\mathrm{clk}}$	23.64	24	24.36	MHz	Due to USB timing constraints
Resonator Impedance	$X_{\text {RES }}$			55	Ω	
Distance from lens reference plane to surface	Z	2.3	2.4	2.5	mm	See Figure 9
Frame Rate			4000		fps	Internally adjusted by sensor

Figure 9. Distance from lens reference plane to object surface

AC Electrical Specifications

Electrical Characteristics over recommended operating conditions. Typical values at $25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{DD}}=5.0 \mathrm{~V}$

Parameter	Symbol	Min.	Typical	Max.	Units	Notes
Wakeup delay from rest mode due to motion.	$T_{\text {WUPP }}$			2	ms	
Power up delay	$T_{\text {PUP }}$			50	ms	
Debounce delay on button inputs	$\mathrm{T}_{\text {DBB }}$	5	10	17	ms	"Maximum" specified at 8ms polling rate.
Scroll wheel sampling period	$T_{\text {SW }}$	150	200	300	$\mu \mathrm{~s}$	ZA PIN for optical scroll wheel
		1.9	2.0	2.8	ms	ZA PIN for mechanical scroll wheel
Transient Supply Current	IDDT			60	mA	Max. supply current during a VDD ramp from 0 to 5.0 V with > 500 μ rise time. Does not include charging currents for bypass capacitors.
Input Capacitance (OSC Pins)	COSC_IN		50		pF	OCS_IN, OSC_OUT to GND

USB Electrical Specifications

Electrical Characteristics over recommended operating conditions.

Parameter	Symbol	Min.	Max.	Units	Notes	
Output Signal Crossover Voltage	$V_{\text {CRS }}$	1.5	2.0	V	$C_{L}=200$ to 600 pF (see Figure 10)	
Input Signal Crossover Voltage	VICRS	1.2	2.1	V	$C_{L}=200$ to 600 pF (see Figure 10)	
Output High	V_{OH}	2.8	3.6	V	with 15 kohm to Ground and $7.5 \mathrm{k} \Omega$ to Vbus on D- (see Figure 11)	
Output Low	$\mathrm{V}_{\text {OL }}$	0.0	0.3	V	with 15 kohm to Ground and $7.5 \mathrm{k} \Omega$ to Vbus on D- (see Figure 11)	
Single Ended Input	$\mathrm{V}_{\text {SEI }}$		0.8	V		
Input High (Driven)	V_{IH}	2.0		V		
Input High (Floating)	$\mathrm{V}_{\mathrm{IHZ}}$	2.7	3.6	V		
Input Low	VIL		0.8	V	$7.5 \mathrm{k} \Omega$ to $\mathrm{V}_{\mathrm{DD} 5}$	
Differential Input Sensitivity	V_{DI}	0.2		V	\|(D+)-(D-)	See Figure 12
Differential Input Common Mode Range	V_{CM}	0.8	2.5	V	Includes V ${ }_{\text {DI }}$, See Figure 12	
Single Ended Receiver Threshold	$\mathrm{V}_{\text {SE }}$	0.8	2.0	V		
Transceiver Input Capacitance	$\mathrm{CIN}_{\text {IN }}$		12	pF	$D+$ to $\mathrm{V}_{\text {BUS }}, \mathrm{D}$ - to $\mathrm{V}_{\text {BUS }}$	

USB Timing Specifications

Timing Specifications over recommended operating conditions.

Parameter	Symbol	Min.	Max.	Units	Notes
D+/D- Transition rise time	TLR	75		ns	$C_{L}=200 \mathrm{pF}$ (10\% to 90\%), see Figure 10
D+/D- Transition rise time	TLR		300	ns	$\mathrm{C}_{\mathrm{L}}=600 \mathrm{pF}$ (10\% to 90\%), see Figure 10
D+/D- Transition fall time	TLF	75		ns	$C_{L}=200 \mathrm{pF}$ (90% to 10\%), see Figure 10
D+/D- Transition fall time	TLF		300	ns	$C_{L}=600 \mathrm{pF}$ (90\% to 10\%), see Figure 10
Rise and Fall time matching	TLRFM	80	125	\%	$T_{R} / T_{F} ; C_{L}=200 \mathrm{pF} ;$ Excluding the first transition from the Idle State
Wakeup delay from USB suspend mode due to buttons push	TWUPB		17	ms	Delay from button push to USB operation Only required if remote wakeup enabled
Wakeup delay from USB suspend mode due to buttons push until accurate navigation	TWUPN		50	ms	Delay from button push to navigation operation Only required if remote wakeup enabled
USB reset time	$\mathrm{T}_{\text {reset }}$	18.7		$\mu \mathrm{s}$	
Data Rate	t LDRATE	1.4775	1.5225	Mb/s	Average bit rate, 1.5 Mb/s +/-1.5\%
Receiver Jitter Tolerance	$\mathrm{t}_{\text {DJR1 }}$	-75	75	ns	To next transition, see Figure 13
Receiver Jitter Tolerance	$t_{\text {DJR2 }}$	-45	45	ns	For paired transitions, see Figure 13
Differential to EOP Transition Skew	tLDEOP	-40	100	ns	See Figure 14
EOP Width at Receiver	tLEOPR	670		ns	Accepts EOP, see Figure 14
Source EOP Width	tLEOPT	1.25	1.50	$\mu \mathrm{s}$	
Width of SEO interval during Differential Transition	$\mathrm{t}_{\text {LST }}$		210	ns	See Figure 11
Differential Output Jitter	tud, 1	-95	95	ns	To next transition, see Figure 15
Differential Output Jitter	tudJ2	-150	150		For paired transitions, see Figure 15

Figure 10. Data Signal Rise and Fall Times

Figure 11. Data Signal Voltage Levels

Figure 12. Differential Receiver Input Sensitivity vs. Common Mode Input Range

Figure 13. Receiver Jitter Tolerance

Figure 14. Differential to EOP Transition Skew and EOP Width

Figure 15. Differential Output Jitter

DC Electrical Specifications

Electrical Characteristics over recommended operating conditions. Typical values at $25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{DD}}=5.0 \mathrm{~V}$.

Parameter	Symbol	Minimum	Typical	Maximum	Units	Notes
System Current, mouse moving	IDD5			100	mA	Includes XY_LED current
System Current, mouse not moving	IDD5N			100	mA	Includes XY_LED current
System current, USB suspend mode, Remote Wakeup Enabled	IDD5s			500	$\mu \mathrm{A}$	Includes XY_LED current and D- pullup resistor.
Supply current (Sensor only), mouse moving	IDDS		12	15	mA	No load on B1-B5, XY-LED, ZA, ZB, D+, D-
Supply current (Sensor only), mouse not moving	IDDSN		11	14	mA	No load on B1-B5, XY-LED, ZA, ZB, D+, D-
Sensor supply current, USB suspend mode	IDDSS			260	$\mu \mathrm{A}$	No load on B1-B5, XY-LED, ZA, ZB, D+,D-
XY_LED current	ILED		40	49	mA	Typical at Rbin 59ohm with binP LED. Maximum DC current allowed through XY_LED pin and LED.
XY_LED Output Low Voltage	$\mathrm{V}_{\text {OL }}$			1.1	V	Refer to Figure 16
Input Low Voltage	$\mathrm{V}_{\text {IL }}$			0.5	V	Pins: ZA, ZB, B1-B5, $\mathrm{V}_{\mathrm{IL}} \max$ of $0.5 \mathrm{~V}_{\mathrm{DC}}$ is at V_{DD} min of $4 \mathrm{~V}_{D C}$, with a typical of $0.8 \mathrm{~V}_{D C}$ at $V_{D D}$ of $5 V_{D C}$
Input High Voltage	$\mathrm{V}_{1 \mathrm{H}}$	$0.6 * V_{\text {DD }}$			V	Pins: ZA, ZB, B1-B5
Input Hysteresis	$\mathrm{V}_{\mathrm{HYST}}$		285		mV	Pins: B1-B5, OPT 0, OPT 1
Button Pull Up Current	Biout	125	275	500	$\mu \mathrm{A}$	Pins: B1-B5, OPT 0, OPT 1

Buttons

The minimum time between button presses is TDBB. Buttons B1 through B5 are connected to a Schmidt trigger input with 100 uA current sources pulling up to +3 volts during normal, sleep and USB suspend modes.

Debounce Algorithm

- Button inputs B1, B2, B3, B4, B5 are sampled every 2 ms .
- Three consecutive low create a button press event.
- Three consecutive high create a button release event.

Typical Performance Characteristics

Performance Characteristics over recommended operating conditions. Typical values at $25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{DD}}=5.0 \mathrm{~V}, 24 \mathrm{MHz}$

| Parameter | Symbol | Minimum | Typical | Maximum | Units |
| :--- | :--- | :--- | :--- | :--- | :--- | Notes | Path Error
 (Deviation) | $P_{\text {Error }}$ | | 0.5 |
| :--- | :--- | :--- | :--- |

The following graphs are the typical performance of the ADNS-5700 sensor, assembled as shown in the 2D assembly drawing with the ADNS-5100-001 trim lens/Prism, the ADNS-5200 clip, and the HLMP-EG3E-xxxxx LED.

Figure 16. Typical Resolution vs. Z Height

Figure 17. Wavelength responsivity. ${ }^{[1]}$ (Comparative Surfaces)

Note:

1. The ADNS-5700 is designed for optimal performance when used with the HLMP-EG3E-xxxxx (Red LED 639nm).
2. $Z=$ distance from Lens Reference Plane to Surface.
3. DOF = Depth of Field

Configuration after Power up (Data Values)

Signal Function	State from Figure 9-1 of USB spec: Powered or Default Address or Configured	State from Figure 9-1 of USB spec: Suspended from any other state
B1	$V_{\text {DD3 }}$ or GND if used as VID/PID jumper else pullup active for button use	$V_{\text {DD3 }}$ or GND if used as VID/PID jumper else pullup active for button use
B2	$V_{\text {DD3 }}$ or GND if used as VID/PID jumper	$V_{\text {DD3 }}$ or GND if used as VID/PID jumper
B3	$V_{\text {DD3 }}$ or GND if used as VID/PID jumper	$V_{\text {DD3 }}$ or GND if used as VID/PID jumper
B4	$V_{\text {DD3 }}$ or GND if used as VID/PID jumper else pullup active for button use	$V_{\text {DD3 }}$ or GND if used as VID/PID jumper else pullup active for button use
B5	$V_{\text {DD3 }}$ or GND if used as VID/PID jumper else pullup active for button use	$V_{\text {DD3 }}$ or GND if used as VID/PID jumper else pullup active for button use
D-	USB I/O	Hi-Z input
D+	USB I/O	Hi-Z input
OSC_IN	24 MHz	Logic '1'
OSC_OUT	24 MHz	Logic '1'
XY_LED	Always ON / Pulsing	Pulled high (off)
ZB	Hi-Z input	Hi-Z input
ZA	Hi-Z if ZA tied to GND	Hi-Z input
Z_LED	$\mathrm{Hi}-\mathrm{Z}$ input	$\mathrm{Hi}-\mathrm{Z}$ input

USB Commands

Mnemonic	Command	Notes
USB_RESET	D+/D- low > 18.7us	Device Resets; Address=0
USB_SUSPEND	Idle state $>3 \mathrm{mS}$	Device enters USB low-power mode
USB_RESUME	Non-idle state	Device exits USB low-power mode
Get_Status_Device	8000000000000200	Normally returns 0000 , Self powered 0000 , Remote wakeup 0200
Get_Status_Interface	8100000000000200	Normally returns 0000
Get_Status_Endpt0	82000000 xx 000200	OUT: xx=00, $\mathrm{IN}: \mathrm{xx}=80$ Normally returns 0000
Get_Status_Endpt1	8200000081000200	Normally returns 00 00, Halt 0001
Get_Configuration	8008000000000100	Return: 00=not config., 01=configured
Get_Interface	810 O 000000000100	Normally returns 00
Get_Protocol	A1 03000000000100	Normally returns 01, Boot protocol 00
Get_Desc_Device	800600010000 nn 00	See USB command details
Get_Desc_Config	800600020000 nn 00	See USB command details
Get_Desc_String	8006 xx 030000 nn 00	See USB command details
Get_Desc_HID	8106002100000900	See USB command details
Get_Desc_HID_Report	810600220000 nn 00	See USB command details
Get_HID_Input	A1 0100010000 nn 00	Return depends on motion \& config
Get_Idle	A1 02000000000100	Returns rate in multiples of 4 ms
Get_Vendor_Test	C0 010000 xx 000100	Read register xx
Set_Address	0005 xx 0000000000	xx = address
Set_Configuration	0009 xx 0000000000	Not configured: xx=00 Configured: $x x=01$
Set_Interface	01 OB 000000000000	Only one interface supported
Set_Protocol	210 xxx 0000000000	Boot: $\mathrm{xx}=00$, Report: $\mathrm{xx}=01$
Set_Feature_Device	0003010000000000	Enable remote wakeup
Set_Feature_Endpt0	02030000 xx 000000	Halt. OUT: $\mathrm{xx}=00, \mathrm{IN}: \mathrm{xx}=80$
Set_Feature_Endpt1	0203000081000000	Halt
Clear_Feature_Device	0001010000000000	Disable Remote wakeup
Clear_Feature_Endpt0	02010000 xx 000000	Clear Halt; OUT: $\mathrm{xx}=00, \mathrm{IN}: \mathrm{xx}=80$
Clear_Feature_Endpt1	0201000081000000	Clear Halt
Set_Idle	210 A 00 rr 00000000	$\mathrm{rr}=$ report rate in multiples of 4 ms
Set_Vendor_Test	40010000 xx yy 0000	Write yy to address xx
Poll_Endpt1		Read buttons, motion, \& Z-wheel

Note:

The last two bytes in a command shown as "nn 00 " specify the 16 -bit data size in the order of "LowByte HighByte." For example a two-byte data size would be specifed as "0200." ADNS-5700-XXXX will not provide more bytes than the number requested in the command, but it will only supply up to a maximum of 8 bytes at a time. The ADNS-5700-XXXX will re-send the last packet if the transfer is not acknowledged properly.

USB_RESET	D+/D- low for an extended period
USB Spec:	A device may reset after seeing an SEO for more than 18.7 uS, and definitely after 10 mS .
Notes:	After power up and prior to Reset, the device will not respond to any USB commands. After the device has been given a USB Reset, the device's address will be reset to zero and the device will be in the Default state. The chip will default to Report protocol and any pending output will be flushed.
	All registers will be reset to a state that matches power-on-reset with the following exceptions: USB State register will be "Default" instead of "Attached".
USB_SUSPEND	Idle state for an extended period
USB Spec:	A device may suspend after seeing an idle for more than 3 mS , and definitely after 10 ms .
Notes:	The chip will take a minimum of 5 mS to start Suspend, though will definitely start after 6 mS . The chip may finish the current frame if necessary before stopping the clock. Thus, an additional frame time may be used to reach Suspend mode.
USB_RESUME	Non-idle state
USB Spec:	Remote Resume signalling from a device must be between 1 mS and 15 mS . The host is required to send Resume signaling for 20 mS plus 10 mS of resume recovery time in which it does not access any devices. This allows devices enough time to wake back up.
Notes:	The chip can cause a Resume if Remote Wakeup is enabled and a button has been pressed. Remote resume signalling from the chip will last 11.45 mS to 12.45 mS .
Get_Status_Device	8000000000000200
Returns:	$\begin{aligned} & \mathrm{xx} \mathrm{yy} \\ & \mathrm{xx[0]}=\text { Self Powered } \\ & \mathrm{xx[1]}=\text { Remote Wakeup } \\ & \mathrm{xx[7:2]=0} \\ & \mathrm{yy}=00 \text { (Reserved) } \end{aligned}$
Default:	Accept (undefined in USB Spec)
Addressed:	Accept
Configured:	Accept
Notes:	Use Set_Feature_Device/Clear_Feature_Device to set/clear remote wakeup.
Get_Status_Interface	8100000000000200
Returns:	0000
Default:	Stall (undefined in USB Spec)
Addressed:	Stall
Configured:	Accept
Notes:	Both return bytes are reserved and currently 00.

Get_Status_Endpt0	82000000 xx 000200
	8200000000000200
	8200000080000200
	xx = $00=$ Endpt0 OUT
	$x \mathrm{x}=80=$ Endpt0 IN
Returns:	xx yy
	$\mathrm{xx}[0]=$ Halt
	$x \mathrm{x}[7: 1]=0$
	yy $=00$ (Reserved)
Default:	Accept (undefined in USB Spec)
Addressed:	Accept
Configured:	Accept
Notes:	Use Set_Feature_Endpt0/Clear_Feature_Endpt0 to (try to) set/clear Halt bit. According to USB, "It is neither required or recommended that the Halt feature be implemented for the Default
	Control Pipe." Since a new SETUP command will clear any Endpt0 halt bit, it is impossible to tell if there really is a halt bit.
Get_Status_Endpt1	8200000081000200
Returns:	xx yy
	$x \times[0]=$ Halt
	$\mathrm{xx}[7: 1]=0$
	yy = 00 (Reserved)
Default:	Stall (undefined in USB Spec)
Addressed:	Stall
Configured:	Accept
Notes:	Use Set_Feature_Endpt1/Clear_Feature_Endpt1 to set/clear Halt bit.
Get_Configuration	8008000000000100
Returns:	xx
	$x x=$ config value
Default:	Accept (undefined in USB Spec) - returns 00
Addressed:	Accept - returns 00
Configured:	Accept - returns 01
Notes:	Use Set_Configuration to change.
Get_Interface	81 OA 000000000100
Returns:	00
Default:	Stall (undefined in USB Spec)
Addressed:	Stall
Configured:	Accept - returns 00
Notes:	Command has no alternate interfaces, so only valid value is 00

Get_Protocol	A1 03000000000100
Returns:	xx
	$x x=00=$ Boot protocol
	$x x=01=$ Report protocol
Default:	Accept
Addressed:	Accept
Configured:	Accept
Notes:	Defaults to Report protocol after USB Reset. Use Set_Protocol to change.
Get_Desc_Device	800600010000 nn 00
	8006000100001200
Returns:	1201000200000008
	vv vv pp pp dd dd mm PP
	ss 01
	$\mathrm{vv} \mathrm{vv}=$ vendor id
	pp pp = product id (vendor specified)
	dd dd = device id (vendor specified) (bcd rev_id byte)
	$\mathrm{mm}=\mathrm{iManufacturer}$
	PP $=$ iProduct
	ss = iSerialNumber (00-no string)
Default:	Accept
Addressed:	Accept
Configured:	Accept
	Get_Desc_String will return "stall" if Manufacturer string is queried when iManufacturer $=0 \times 00$.

Get_Desc_HID_Report	810600220000 nn 00
Returns:	This returns a report descriptor that describes how many buttons and $\mathrm{x}, \mathrm{y}, \mathrm{z}$ data.

These values are determined by jumper configuration see table on page 4:
With Tilt wheel and 12bit reporting: 05010902 A1 010901
A1 00050919012905
1500250175019505
8102750395018101
0501093009311601
F8 26 FF 0775 0C 9502
81060938158125 7F
$750895018106050 C$
0A 38028106 C0 C0
// HID Report
| 0501 // USAGE_PAGE (Generic Desktop)
| 0902 // USAGE (Mouse)
|A1 01 // COLLECTION (Application)
| 0901 // USAGE (Pointer)
| A1 00 // COLLECTION (Physical)
| 0509 // USAGE_PAGE (Button)
| 1901 // USAGE_MINIMUM (Button 1)
| 2905 // USAGE_MAXIMUM (Button \#)
| 1500 LOGICAL_MINIMUM (0)
| 2501 // LOGICAL_MAXIMUM (1)
| 7501 // REPORT_SIZE (1)
| 9505 // REPORT_COUNT (Button \#)
| 8102 // INPUT (Data,Var,Abs)
| 7503 // REPORT_SIZE (8-Button \#)
| 9501 // REPORT_COUNT (1)
| 8101 // INPUT (Cnst,Ary,Abs)
| 0501 // USAGE_PAGE (Generic Desktop)
| 0930 // USAGE (X)
| 0931 // USAGE (Y)
| 1601 F8 // LOGICAL_MINIMUM (-127)
| 26 FF 07 // LOGICAL_MAXIMUM (127)
| 750 C // REPORT_SIZE (8)
| 9501 // REPORT_COUNT (3)
| 8106 // INPUT (Data,Var,Rel)
| 0938 // USAGE (Zwheel)
| 1581 // LOGICAL_MINIMUM (-127)
| 25 7F // LOGICAL_MAXIMUM (127)
| 7508 // REPORT_SIZE (8)
| 9501 // REPORT_COUNT (1)
| 8106 // INPUT (Data,Var,Rel)
| 05 0C // USAGE_PAGE (Consumer)
| OA 3802 // USAGE (AC Pan)
| 8106 // INPUT (Data,Var,Rel)
|C0 // END_COLLECTION
|C0 // END_COLLECTION

With without Tilt wheel and 12bit reporting:	05010902 A1 010901		
	A1 00050919012905		
	1500250175019505		
	8102750395018101		
	0501093009311601		
	F8 26 FF 07750 C 9502		
	810609381581257 F		
	750895018106 C0 C0		
	// HID Report		
	\| 0501	//	USAGE_PAGE (Generic Desktop)
	\| 0902	//	USAGE (Mouse)
	\| A1 01	//	COLLECTION (Application)
	\| 0901	//	USAGE (Pointer)
	\| A1 00	//	COLLECTION (Physical)
	\| 0509	//	USAGE_PAGE (Button)
	\| 1901	//	USAGE_MINIMUM (Button 1)
	2905	//	USAGE_MAXIMUM (Button \#)
	\| 1500	//	LOGICAL_MINIMUM (0)
	2501	//	LOGICAL_MAXIMUM (1)
	7501	//	REPORT_SIZE (1)
	9505	//	REPORT_COUNT (Button \#)
	\| 8102	//	INPUT (Data,Var,Abs)
	7503	//	REPORT_SIZE (8-Button \#)
	\| 9501	//	REPORT_COUNT (1)
	\| 8101	//	INPUT (Cnst,Ary,Abs)
	0501	//	USAGE_PAGE (Generic Desktop)
	0930	//	USAGE (X)
	\| 0931	//	USAGE (Y)
	1601 F8	//	LOGICAL_MINIMUM (-127)
	\| 26 FF 07	//	LOGICAL_ MAXIMUM (127)
	\| 750 OC	//	REPORT_SIZE (8)
	\| 9501	//	REPORT_COUNT (3)
	\| 8106	//	INPUT (Data,Var,Rel)
	\| 0938	//	USAGE (Zwheel)
	\| 1581	//	LOGICAL_MINIMUM (-127)
	\| 257 F	//	LOGICAL_ MAXIMUM (127)
	\| 7508	//	REPORT_SIZE (8)
	\| 9501	//	REPORT_COUNT (1)
	\| 8106	//	INPUT (Data,Var,Rel)
	\| C0	//	END_COLLECTION
	\| C0	//	END_COLLECTION

Default: Accept
Addressed: Accept
Configured: Accept
Notes:
The length of this report is needed in the HID descriptor.

Get_HID_Input	A1 0100010000 nn 00 $\mathrm{nn}=06$ (with tilt wheel and 12 bit motion reporting) $\mathrm{nn}=05$ (without tilt wheel and 12 bit reporting)
Returns:	bb xx yy zz tw (tilt wheel) OR bb $x x$ yy zz (Z-wheel) OR bb $x x$ yy (if no Z-wheel present) $b b=$ button byte $x x=X$ motion byte $y y=Y$ motion byte $z z=Z$ motion byte $t w=$ tilt wheel byte
Default:	Stall
Addressed:	Stall
Configured:	Accept
Notes:	If the device is configured, it will always respond with a report for this command, even if no motion or button changes have occurred. In this case, it would report 00 for motion and simply report the current button state. If a report is pending on endpt1, the data there will be reported and the report on endpt 1 cleared. The mouse will only create new button/motion packets when it is in the Configured state See USB byte format end of this section for more detail
Get_Idle	$\begin{aligned} & \text { A1 } 02 \text { xx } 0000000100 \\ & \text { xx }=00 \text { All reports } \\ & \text { xx }=01 \text { First report } \end{aligned}$
Returns:	$\begin{aligned} & \mathrm{rr} \\ & \mathrm{rr}=\text { rate in multiples of } 4 \mathrm{mS} \end{aligned}$
Default:	Accept
Addressed:	Accept
Configured:	Accept
Notes:	The third byte of the command is to select the Report ID. There is only one for the mouse -- so, using 00 or 01 will work. See also Set_Idle.
Get_Vendor_Test	$\begin{aligned} & \text { C0 } 010000 \text { xx } 000100 \\ & \text { ii = ignore } \\ & \text { xx = address of register to read } \end{aligned}$
Returns:	rr (depends on register read)
Default:	Accept
Addressed:	Accept
Configured:	Accept
Notes:	Address range (xx) is datasheet register range

Set_Address	$\begin{aligned} & 0005 \text { xx } 0000000000 \\ & \text { xx = new device address, from } 00 \text { to } 7 F \end{aligned}$
Default:	Accept
Addressed:	Accept
Configured:	Accept (undefined in USB Spec) Chip gets new address, but stays in "Configured" mode.
Notes:	If device is not configured, the device will be given the new address and put in the addressed state (or default if new address=00). If the device is already configured, the device will be given the new address state and remain configured.
Set_Configuration	$\begin{aligned} & 0009 x x 0000000000 \\ & x x=00=\text { not configured } \\ & x x=01=\text { configured } \end{aligned}$
Default:	Accept (undefined in USB Spec)
Addressed:	Accept
Configured:	Accept
Notes:	Invalid config values will cause stall. Chip will stall invalid value in configured mode, and leave device in old (configured) mode.
Set_Interface	01 OB 000000000000
Default:	Stall (undefined in USB Spec)
Addressed:	Stall
Configured:	Accept
Notes:	Mouse has only one valid interface (00) and alternate setting (00). Invalid values will cause stall. Chip retains previous (valid) interface state after executing this command in configured mode even if invalid values are given and command was stalled.
Set_Protocol	$\begin{aligned} & 210 B x x 0000000000 \\ & x x=00=\text { Boot protocol } \\ & x x=01=\text { Report protocol } \end{aligned}$
Default:	Accept (Not in USB Spec)
Addressed:	Accept (Not in USB Spec)
Configured:	Accept
Notes:	3 byte data packets will be reported in boot mode. These bytes are button, XX data, and YY data. Tilt wheel botton 7,8 will not be reported
Set_Feature_Device	0003010000000000
Default:	Accept (undefined in USB Spec)
Addressed:	Accept
Configured:	Accept
Notes:	This sets the remote wakeup bit.

Set_Feature_Endpt0	$\begin{aligned} & 02030000 \text { xx } 000000 \\ & 0203000000000000 \\ & 0203000080000000 \\ & x x=00=\text { Endpt0 OUT } \\ & x x=80=\text { Endpto IN } \end{aligned}$
Default:	Stall (undefined in USB Spec)
Addressed:	Stall
Configured:	Stall
Notes:	This (tries to) sets the halt bit. The chip always stalls the status stage for this command. The chip never reports the halt bit set for Endpt0 with the Get_Status_Endpt0 command, as any new SETUP command will clear Endpt0 stall.
Set_Feature_Endpt1	0203000081000000
Default:	Stall (undefined in USB Spec)
Addressed:	Stall
Configured:	Accept
Notes:	Sets the halt bit for Endpt1.
Clear_Feature_Device	0001010000000000
Default:	Accept (undefined in USB Spec)
Addressed:	Accept
Configured:	Accept
Notes:	This clears the remote wakeup bit.
Clear_Feature_Endpt0	02010000 xx 000000 0201000000000000 0201000080000000 xx $=00=$ Endpt0 OUT $\mathrm{xx}=80=$ Endpt0 IN
Default:	Accept (undefined in USB Spec)
Addressed:	Accept
Configured:	Accept
Notes:	The chip does NOT stall like it does for Set_Feature_Endpt0.
Clear_Feature_Endpt1	0201000081000000
Default:	Stall (undefined in USB Spec)
Addressed:	Stall
Configured:	Accept
Notes:	See Set_Feature_Endpt1.

Set_Idle	$\begin{aligned} & 210 \mathrm{~A} x \mathrm{rr} 00000000 \\ & \mathrm{xx}=00 \text { All reports } \\ & \mathrm{xx}=01 \text { First report } \\ & r r=\text { rate in multiples of } 4 \mathrm{mS} \end{aligned}$
Default:	Accept
Addressed:	Accept
Configured:	Accept
Notes:	The third byte of the command is to select the Report ID. There is only one for the mouse - so, using either 00 or 01 will work. The fourth byte of the command sets the rate in multiples of 4 mS . The initial value for mice will be x00 which means "infinite" - that is packets only come out when there is a change in data. Data will only be allowed to come out when the device is configured. However, the chip will accept the command in Default or Addressed mode and use that value when the device is later configured.
Set_Vendor_Test	$\begin{aligned} & 40010000 \text { xx yy } 0000 \\ & x x=\text { address } \\ & \text { yy = data } \end{aligned}$
Default:	Accept
Addressed:	Accept
Configured:	Accept
Notes:	Address range for " xx " should be 0×00 to $0 \times 3 \mathrm{~F}$. Addresses above this are reserved for possible future use. See also Get_Vendor_Test.

Poll_Endpt1

Returns:	$b b x x y y z z$ tw $b b=$ button byte $x x=X$ motion byte $y y=Y$ motion byte $z z=Z$ motion byte (if Z-Wheel) Default: Addressed: Configured $:$$\quad$Ignore request
	Ignore request

Notes: See also Get_HID_Input. Endpt will only stall if halt bit is set by Set_Feature_Endpt1. Details of data packet are below

Endpt 1 should be polled at least every 10 frames (mS). It is typically polled every 8 frames on Windows machines. For internal testing, Endpt1 can be continuously polled if desired.

The chip will not generate any report packets unless in the Configured state.
If Endpt 1 is currently empty, any motion or button change will be loaded into the Endpt1 buffers. Once the Endpt 1 buffers are full, any further motion events will get accumulated. When the Endpt1 buffers are later polled and emptied, the current accumulated X/Y/Z values will be loaded into the Endpt1 buffers. After transferring their data, the accumulation registers are reset so they are ready to start accumulating new motion events.

Button information is handled a bit differently. If the Endpt 1 buffers are empty, and a button change event occurs, the new button state is put into the Endpt1 buffers. At the same time, the button state that is put in Endpt1 is copied for later use. While Endpt 1 is full, changes in button state are essentially ignored. When Endpt 1 is emptied, if the current button state is different than that which was last loaded into Endpt1, then the new state will be loaded and a new copy saved. Basically, the button state that is loaded into Endpt 1 is always the current button state at that point in time. It should also be noted that there is hardware on the chip to help de-bounce the buttons.

Special note on wLength: The wLength paramater in commands specifies the maximum number of bytes a device should send back. The commands listed below are not able to handle a wLength of 0 correctly.

```
Get_Status_Device
Get_Status_Interface
Get_Status_Endpt0
Get_Status_Endpt1
Get_Configuration
Get_Interface
```

This chip will send one byte of data rather than none when wLength $=0$ is requested for the above commands.

USB Data Packet Format of mouse with tilt wheel

Bit	$\mathbf{7}$	$\mathbf{6}$	$\mathbf{5}$	$\mathbf{4}$	$\mathbf{3}$	$\mathbf{2}$	$\mathbf{1}$	$\mathbf{0}$
Byte 1	0	0	0	0	0	B3(MB)	B2(RB)	B1(LB)
Byte 2	X7	X6	X5	X4	X3	X2	X1	X0
Byte 3	Y3	Y2	Y1	Y0	X11	X10	X9	X8
Byte 4	Y11	Y10	Y9	Y8	Y7	Y6	Y5	Y4
Byte 5	Z7	Z6	Z5	Z4	Z3	Z2	Z1	Z0
Byte 6	TW7	TW6	TW5	TW4	TW3	TW2	TW1	TW0

USB Data Packet Format of mouse without tilt wheel

Bit	7	6	5	4	3	2	1	0
Byte 1	0	0	0	0	0	B3(MB)	B2(RB)	B1 (LB)
Byte 2	X7	X6	X5	X4	X3	X2	X1	X0
Byte 3	Y3	Y2	Y1	Y0	X11	X10	X9	X8
Byte 4	Y11	Y10	Y9	Y8	Y7	Y6	Y5	Y4
Byte 5	Z7	Z6	Z5	Z4	Z3	Z2	Z1	Z0
Byte 6	0	0	0	0	0	0	0	0

USB Data Packet Format of 5 button mouse

Bit	$\mathbf{7}$	$\mathbf{6}$	$\mathbf{5}$	$\mathbf{4}$	$\mathbf{3}$	$\mathbf{2}$	$\mathbf{1}$	$\mathbf{0}$
Byte 1	0	0	0	B5	B4	B3(MB)	B2(RB)	B1(LB)
Byte 2	X 7	X6	X5	X4	X3	X2	X1	X0
Byte 3	Y3	Y2	Y1	Y0	X11	X10	X9	X8
Byte 4	Y11	Y10	Y9	Y8	Y7	Y6	Y5	Y4
Byte 5	Z7	Z6	Z5	Z4	Z3	Z2	Z1	Z0
Byte 6	0	0	0	0	0	0	0	0

Registers

The sensor can be programmed through registers, via the USB port, and configuration and motion data can be read from these registers. Certain registers must be "enabled"

Address	Register
0×00	Product_ID
0×01	Revision_ID
0×02	MouseStat
0×03	Delta_X_L
0×04	Delta_Y_L
0×05	Delta_XY_H
0×06	SQUAL
0×07	Shut_Hi

after power up but before first read or write to that register. The registers will be "disabled" by VDD going low or sending a USB reset command.

Address	Register
0×08	Shut_Low
0×09	Pix_Max
$0 \times 0 \mathrm{a}$	Pix_Accum
$0 \times 0 \mathrm{~b}$	Pix_Min
$0 \times 0 \mathrm{c}$	Pix_Grabber
$0 \times 0 \mathrm{~d}$	Dz
$0 \times 0 \mathrm{e}-3 \mathrm{f}$	Reserved
0×40	InvRevID

Product_ID Access: Read		Address: 0×00 Reset Value: 0×27							
Bit	7	6	5	4	3	2	1	0	
Field	PID_{7}	PID_{6}	PID_{5}	PID_{4}	PID_{3}	PID_{2}	PID_{1}	PID_{0}	

Data Type: Eight bit number with the product identifier.
USAGE: The value in this register does not change; it can be used to verify that the sensor communications link is OK.

Revision_ID Access: Read	7	Address: 0x01 Reset Value: 0×01							
Bit	7	6	5	4	3	2	1	0	
Field	RID_{7}	RID_{6}	RID_{5}	RID_{4}	RID_{3}	RID_{2}	RID_{1}	RID_{0}	

Data Type: Eight bit number with current revision of the IC.
USAGE: This register contains the IC revision. It is subject to change when new IC versions are released.

MouseStat Access: Read		Address: 0x02 Reset Value: Undefined						
Bit	7	6	5	4	3	2	1	0
Field	MOT	Reserved	Reserved	BUT $_{5}$	BUT $_{4}$	BUT $_{3}$	BUT $_{2}$	BUT $_{1}$

Data Type: Bit field
USAGE: A" 1 " in the motion bit indicates that the USB endpoint has valid data. This register is included for test purposes only. For navigation use, use the USB HID defined commands. The button status bits reported are for the debounce signals.

Field Name	Description
MOT	For Internal test purposes only
Reserved	Reserved
BUT $_{5}$	Reports the status of B5
	$0=$ pin at logic 1 (Vdd3)
	$1=$ pin at logic 0 (GND)
BUT $_{4}$	Reports the status of B4
	$0=$ pin at logic 1 (Vdd3)
	$1=$ pin at logic 0 (GND)
BUT $_{3}$	Reports the status of B3
	$0=$ pin at logic 1 (Vdd3)
	$1=$ pin at logic 0 (GND)
BUT $_{2}$	Reports the status of B2
	$0=$ pin at logic 1 (Vdd3)
	$1=$ pin at logic 0 (GND)
BUT $_{1}$	Reports the status of B1
	$0=$ pin at logic 1 (Vdd3)
	$1=$ pin at logic 0 (GND)

Delta_X_L
Access: Read

Address: 0x03
Reset Value: 0x00

Bit	7	6	5	4	3	2	1	0
Field	X_{7}	X_{6}	X_{5}	X_{4}	X_{3}	X_{2}	X_{1}	X_{0}

Data Type: Bit field
USAGE: The value in this register reflects the last USB delta X (lower 8 bits) data output or data queued for output. This register is included for test purposes only. For navigation use, use the HID defined commands. Data is 2's complement. Absolute value is determined by the currently set resolution.
Register 0x03 must be read before register 0x04 (Delta_Y_L) and 0x05 (Delta_XY_H)

Delta_Y_L Access: Read		Address: 0x04 Reset Value: 0×00							
Bit	7	6	5	4	3	2	1	0	
Field	Y_{7}	Y_{6}	Y_{5}	Y_{4}	Y_{3}	Y_{2}	Y_{1}	Y_{0}	

Data Type: Bit field
USAGE: The value in this register reflects the last USB delta Y (lower 8 bits) data output or data queued for output. This register is included for test purposes only. Register 0×03 should be read before register 0×04 (Delta_Y_L) and 0×05 (Delta_XY_H), else Delta_Y_L will return 0. For navigation use, use the HID defined commands. Data is 2's complement. Absolute value is determined by the currently set resolution.

Delta_XY_H Access: Read		Address: 0x05 Reset Value: 0×00							
Bit	7	6	5	4	3	2	1	0	
Field	X_{11}	X_{10}	X_{9}	X_{8}	Y_{11}	Y_{10}	Y_{9}	Y_{8}	

Data Type: Bit field
USAGE: The value in this register reflects the last USB delta X and Y (upper 4 bits) data output or data queued for output. This register is included for test purposes only. Register 0×03 should be read before register 0×04 (Delta_Y_L) and 0×05 (Delta_XY_H), else Delta_XY_H will return 0 . For navigation use, use the HID defined commands. Data is 2's complement. Absolute value is determined by the currently set resolution.

SQUAL
Access: Read

Address: 0x06
Reset Value: 0x00

Bit	7	6	5	4	3	2	1	0
Field	SQ_{7}	SQ_{6}	SQ_{5}	SQ_{4}	SQ_{3}	SQ_{2}	SQ_{1}	SQ_{0}

Data Type: Eight bit number.
USAGE: SQUAL is a measure of the number of features visible by the sensor in the current frame. The maximum value is 128. Since small changes in the current frame can result in changes in SQUAL, slight variations in SQUAL on one surface is expected.

Shut_Hi Access: Read	Address: 0x07 Reset Value: 0×00							
Bit	7	6	5	4	3	2	1	0
Field	S_{15}	$\mathrm{~S}_{14}$	$\mathrm{~S}_{13}$	$\mathrm{~S}_{12}$	$\mathrm{~S}_{11}$	$\mathrm{~S}_{10}$	$\mathrm{~S}_{19}$	$\mathrm{~S}_{18}$

Data Type: Eight bit number.
USAGE: The combination of Shut_Hi and Shut_Low is a 16-bit number. This is the number of clocks the shutter was open for the last image taken. The units are in main clocks ticks (nominally 24 MHz). To avoid split read issues, read Shut_Hi first.

Shut_Low Access: Read			Address: 0x08 Reset Value: 0x64					
Bit	7	6	5	4	3	2	1	0
Field	S_{7}	$\mathrm{~S}_{6}$	$\mathrm{~S}_{5}$	$\mathrm{~S}_{4}$	$\mathrm{~S}_{3}$	$\mathrm{~S}_{2}$	$\mathrm{~S}_{1}$	$\mathrm{~S}_{0}$

Data Type: Eight bit number.
USAGE: The combination of Shut_Hi and Shut_Low is a 16-bit number. This is the number of clocks the shutter was open for the last image taken. The units are in main clocks ticks (nominally 24 MHz). To avoid split read issues, read Shut_Hi first (0x06).

Pix_Max Access: Read	7		Address: 0x09 Reset Value: 0×00					
Bit	7	6	5	4	3	2	1	0
Field	0	$M X_{6}$	$M X_{5}$	$M X_{4}$	$M X_{3}$	$M X_{2}$	$M X_{1}$	$M X_{0}$

Data Type: Eight bit number.
USAGE: This is the maximum pixel value from the last image taken.

| Pix_Accum
 Access: Read | | Address: 0x0a
 Reset Value: 0x00 | | | | | | |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| Bit | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 |
| Field | AC_{7} | AC_{6} | AC_{5} | AC_{4} | $A C_{3}$ | $A C_{2}$ | $A C_{1}$ | $A C_{0}$ |

Data Type: Eight bit number.
USAGE: This is the accumulated pixel value from the last image taken. For the 19×19 raw image only the 8 most interesting bits are reported ([15:8]). To get the true average pixel value, divide this register value by 1.41 .

Pix_Min Access: Read		Address: 0x0b Reset Value: 0x7f						
Bit	7	6	5	4	3	2	1	0
Field	0	$M N_{6}$	MN_{5}	$M N_{4}$	$M N_{3}$	MN_{2}	MN_{1}	MN_{0}

Data Type: Eight bit number.
USAGE: This is the minimum pixel value from the last image taken.

Pix_Grab

Access: Read

Address: 0x0c
Reset Value: 0x00

Bit	7	6	5	4	3	2	1	0
Field	VALID	PG_{6}	PG_{5}	PG_{4}	PG_{3}	PG_{2}	PG_{1}	PG_{0}

Data Type: Eight bit number.
USAGE: The pixel grabber captures 1 pixel per frame. If there is a valid pixel in the grabber when this is read, the MSB will be set, an internal counter will incremented to captured the next pixel and the grabber will be armed to capture the next pixel. It will take 361 reads to upload the completed image.
Any write to this register will reset and arm the grabber to grab pixel 0 on the next image. See pixel array numbering in Figure 19.

Pixel Address Map (Looking through the sensor at the surface)

0	19	38	57	76	95	114	133	152	171	190	209	228	247	266	285	304	323	342
1	20	39	58	77	96	115	134	153	172	191	210	229	248	267	286	305	324	343
2	21	40	59	78	97	116	135	154	173	192	211	230	249	268	287	306	325	344
3	22	41	60	79	98	117	136	155	174	193	212	231	250	269	288	307	326	345
4	23	42	61	80	99	118	137	156	175	194	213	232	251	270	289	308	327	346
5	24	43	62	81	100	119	138	157	176	195	214	233	252	271	290	309	328	347
6	25	44	63	82	101	120	139	158	177	196	215	234	253	272	291	310	329	348
7	26	45	64	83	102	121	140	159	178	197	216	235	254	273	292	311	330	349
8	27	46	65	84	103	122	141	160	179	198	217	236	255	274	293	312	331	350
9	28	47	66	85	104	123	142	161	180	199	218	237	256	275	294	313	332	351
10	29	48	67	86	105	124	143	162	181	200	219	238	257	276	295	314	333	352
11	30	49	68	87	106	125	144	163	182	201	220	239	258	277	296	315	334	353
12	31	50	69	88	107	126	145	164	183	202	221	240	259	278	297	316	335	354
13	32	51	70	89	108	127	146	165	184	203	222	241	260	279	298	317	336	355
14	33	52	71	90	109	128	147	166	185	204	223	242	261	280	299	318	337	356
15	34	53	72	91	110	129	148	167	186	205	224	243	262	281	300	319	338	357
16	35	54	73	92	111	130	149	168	187	206	225	244	263	282	301	320	339	358
17	36	55	74	93	112	131	150	169	188	207	226	245	264	283	302	321	340	359
18	37	56	75	94	113	132	151	170	189	208	227	246	265	284	303	322	341	360

$\begin{array}{ll}\text { P } \\ \text { O } \\ \text { S } & \\ \text { I } \\ \text { T } \\ \text { I } \\ \text { V } & \\ \text { E } & \\ \text { Y } & \end{array}$

Figure 19. Pixel Map
The figure above shows the readout order of the array. Rows are read top to bottom and columns are from right to left.

Dz Access: Read			Address: 0x0d Reset Value: 0x00					
Bit	7	6	5	4	3	2	1	0
Field	Z_{7}	Z_{6}	Z_{5}	Z_{4}	Z_{3}	Z_{2}	Z_{1}	Z_{0}

Data Type: Bit field
USAGE: If mouse is configured to contain a Z-wheel, this register contains the Z-wheel count. Range is from -127 to 127 decimal.

Reserved
Address: 0x0e - 0x3f

InvRevID
Access: Read

Address: 0x040
Reset Value: 0xfe

Bit	7	6	5	4	3	2	1	0
Field	RRID $_{7}$	RRID_{6}	RRID_{5}	RRID_{4}	RRID_{3}	RRID_{2}	RRID_{1}	RRID_{0}

Data Type: Eight bit number with current revision of the IC.
USAGE: Contains the inverse of the revision ID which is located in register 0x01.

IC Register state after Reset (power up)

Address	Register	Default Value	Meaning
0x00	Product_ID	0×27	Product ID $=27$ (Fixed value)
0x01	Revision_ID	0x01	Revision of IC (Fixed value). (For each device design revision).
0x02	MouseStat	-	
0×03	Delta_X_L	0x00	
0x04	Delta_Y_L	0x00	
0x05	Delta_XY_H	0x00	
0x06	SQUAL	0x00	
0×07	Shut_Hi	0x00	
0×08	Shut_Low	0x64	
0x09	Pix_Max	0x00	
0x0a	Pix_Accum	0x00	
0x0b	Pix_Min	0x00	
0x0c	Pix_Grabber	0x00	
0x0d	Dz	0x00	
0x0e-3f	Reserved	-	
0x40	InverseRevesion ID	0xFE	

