ADNS-5050 Optical Mouse Sensor

Data Sheet

Description

The ADNS-5050 is a mainstream, small form factor optical mouse sensor. It is a user-friendly product with many built-in features and optimized for LED-based corded products.

The ADNS-5050 is capable of high-speed motion detection – up to 30ips and 8g. In addition, it has an on-chip oscillator and built-in LED driver to minimize external components. Frame rate is also adjusted internally.

The ADNS-5050 along with the 5100-001 lens, LED clip and HLMP-EG3E-xxxxx LED form a complete and compact mouse tracking system. There are no moving parts, which mean high reliability and less maintenance for the end user. In addition, precision optical alignment is not required, facilitating high volume assembly.

The sensor is programmed via registers through a threewire SPI interface. It is housed in an 8-pin staggered dual in-line package (DIP).

Theory of Operation

The ADNS-5050 is based on Optical Navigation Technology, which measures changes in position by optically acquiring sequential surface images (frames) and mathematically determining the direction and magnitude of movement.

The ADNS-5050 contains an Image Acquisition System (IAS), a Digital Signal Processor (DSP), and a three wire serial port.

The IAS acquires microscopic surface images via the lens and illumination system. These images are processed by the DSP to determine the direction and distance of motion. The DSP calculates the Δx and Δy relative displacement values.

An external microcontroller reads the Δx and Δy information from the sensor serial port. The microcontroller then translates the data into PS2 or USB signals before sending them to the host PC.

Features

- Small form factor, pin-to-pin compatible with ADNS-5020-EN
- Register-to-register compatible with ADNS-5020-EN
- Built-in LED driver for simpler circuitry
- High speed motion detection at 30 ips and up to 8g
- Self-adjusting frame rate for optimum performance
- Internal oscillator no clock input needed
- Default 500 cpi resolution, adjustable from 125 to 1375 cpi via 125 cpi step
- Operating voltage: 5V nominal
- Three-wire serial interface
- Only 4 capacitors and no transistor required

Applications

- Optical Mice
- Optical trackballs
- Integrated input devices

Pinout of ADNS-5050 Optical Mouse Sensor

Pin	Name	Description	l/0 type
1	SDIO	Serial Port Data Input and Output	I/O
2	XY_LED	LED Control	0
3	NRESET	Reset Pin (active low input)	Ι
4	NCS	Chip Select (active low input)	I
5	V _{DD5}	Supply Voltage	Power
6	GND	Ground	Ground
7	REGO	Regulator Output	0
8	SCLK	Serial Clock Input	Ι

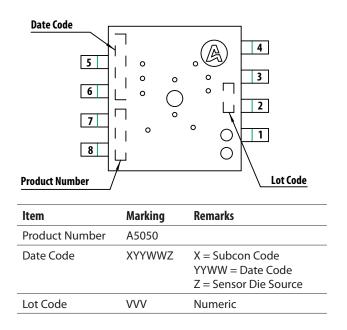
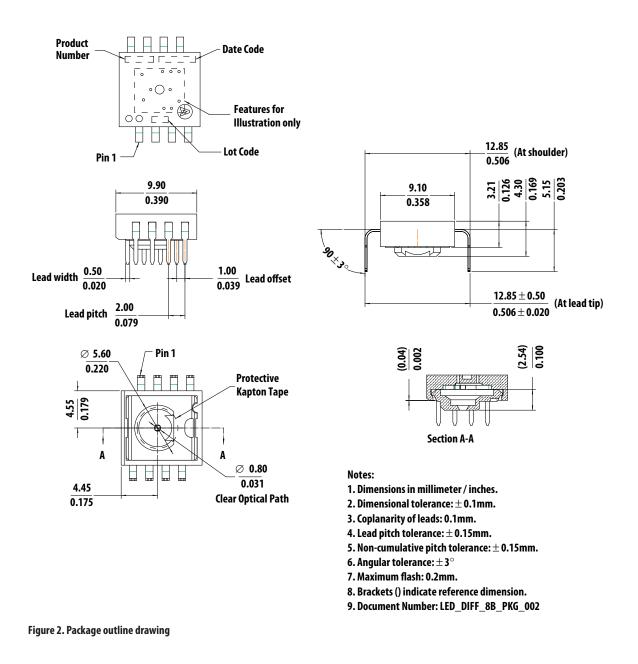



Figure 1. Package outline drawing (top view).

CAUTION: It is advised that normal static precautions be taken in handling and assembly of this component to prevent damage and/or degradation which may be induced by ESD.

Overview of Optical Mouse Sensor Assembly

Avago Technologies provides an IGES file drawing describing the base plate molding features for lens and PCB alignment.

The ADNS-5050 sensor is designed for mounting on a through-hole PCB, looking down. There is an aperture stop and features on the package that align to the lens.

The ADNS-5100-001 lens provides optics for the imaging of the surface as well as illumination of the surface at the optimum angle. Features on the lens align it to the sensor, base plate, and clip with the LED.

The LED clip holds the LED in relation to the lens. The LED must be inserted into the clip and the LED's leads formed prior to loading on the PCB.

The HLMP-EG3E-xxxxx LED is recommended for illumination.

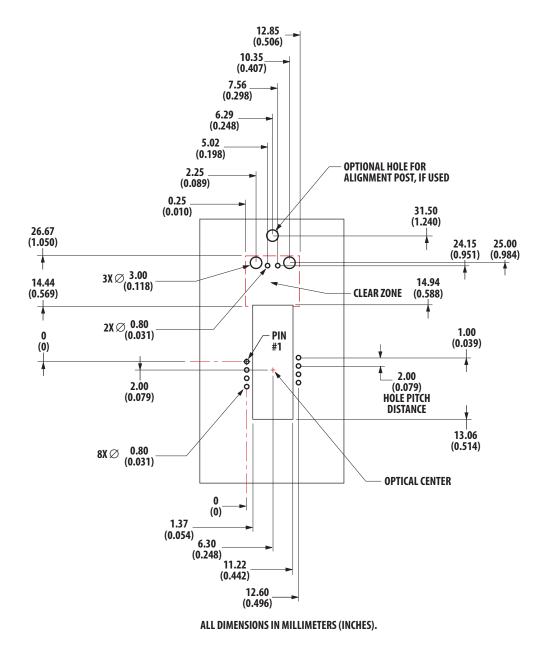
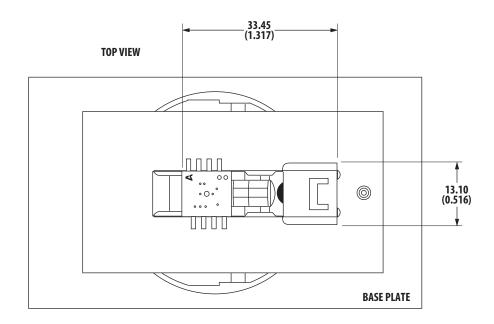



Figure 3. Recommended PCB mechanical cutouts and spacing.


```
DIMENSIONS IN mm (INCHES)
```

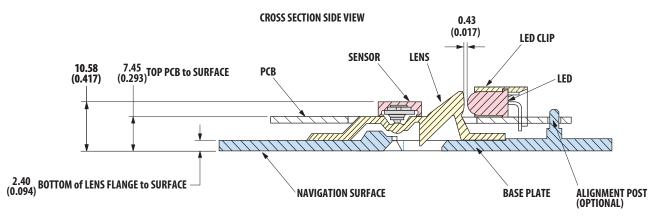


Figure 4. 2D Assembly drawing of ADNS-5050 (top and side views).

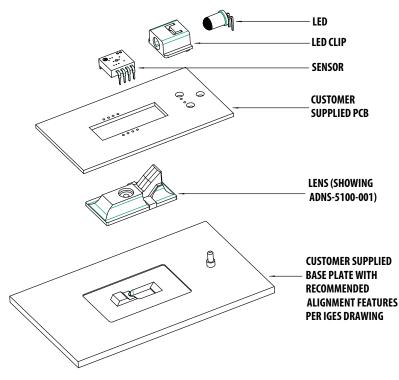


Figure 5. Exploded view drawing.

PCB Assembly Considerations

- 1. Insert the sensor and all other electrical components into PCB.
- 2. Insert the LED into the assembly clip and bend the leads 90 degrees.
- 3. Insert the LED clip assembly into PCB.
- 4. This sensor package is only qualified for wave-solder process.
- 5. Wave solder the entire assembly in a no-wash solder process utilizing solder fixture. The solder fixture is needed to protect the sensor during the solder process. It also sets the correct sensor-to-PCB distance as the lead shoulders do not normally rest on the PCB surface. The fixture should be designed to expose the sensor leads to solder while shielding the optical aperture from direct solder contact.
- 6. Place the lens onto the base plate.
- Remove the protective kapton tape from optical aperture of the sensor. Care must be taken to keep contaminants from entering the aperture. Recommend not to place the PCB facing up during the entire mouse assembly process. Recommend to hold the PCB first vertically for the kapton removal process.
- 8. Insert PCB assembly over the lens onto the base plate aligning post to retain PCB assembly. The sensor aperture ring should self-align to the lens.

- 9. The optical position reference for the PCB is set by the base plate and lens. Note that the PCB motion due to button presses must be minimized to maintain optical alignment.
- 10. Install mouse top case. There MUST be a feature in the top case to press down onto the PCB assembly to ensure all components are interlocked to the correct vertical height.

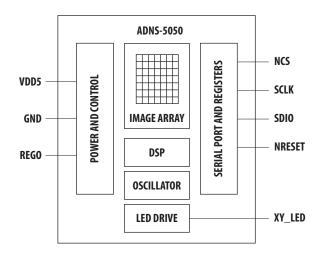


Figure 6. Block diagram of ADNS-5050 optical mouse sensor.

Design Considerations for Improved ESD Performance

For improved electrostatic discharge performance, typical creepage and clearance distance are shown in the table below. Assumption: base plate construction as per the Avago Technologies supplied IGES file and ADNS-5100-001 lens.

Typical Distance	A5100-001
Creepage	17.9
Clearance	9.2

NOTE: The lens material is polycarbonate or polystyrene HH30, therefore, cyanoacrylate based adhesives orother adhesives that may damage the lens should **NOT** be used.

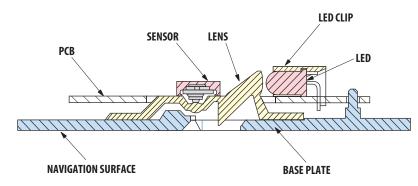


Figure 7. Sectional view of PCB assembly highlighting optical mouse components.

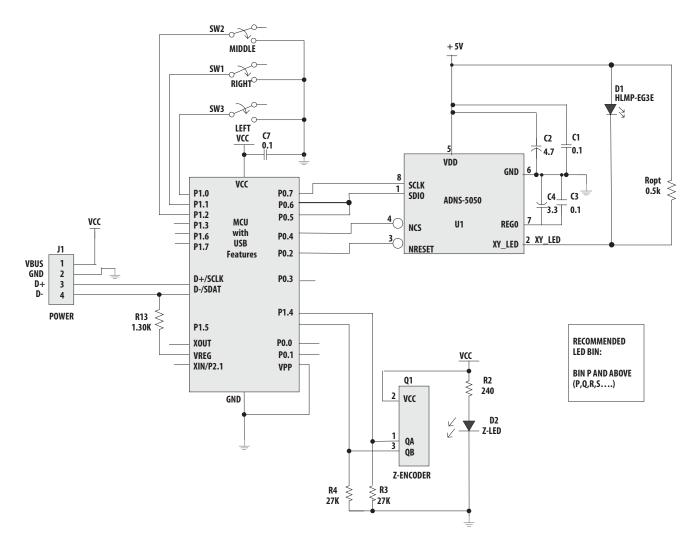


Figure 8. Schematic diagram for interface between ADNS-5050 and microcontroller.

Regulatory Requirements

- Passes FCC B and worldwide analogous emission limits when assembled into a mouse with shielded cable and following Avago Technologies recommendations.
- Passes IEC-1000-4-3 radiated susceptibility level when assembled into a mouse with shielded cable and following Avago Technologies recommendations.
- Passes EN61000-4-4/IEC801-4 EFT tests when assembled into a mouse with shielded cable and following Avago Technologies recommendations.
- UL flammability level UL94 HB.
- Provides sufficient ESD creepage/clearance distance to avoid discharge up to 15 kV when assembled into a mouse using lens according to usage instructions above.

Absolute Maximum Ratings

Parameter	Symbol	Minimum	Maximum	Units	Notes
Storage Temperature	Ts	-40	85	°C	
Lead Solder Temp			260	°C	
Supply Voltage	V _{DD}	-0.5	5.5	V	
ESD			2	kV	All pins, human body model MIL 883 Method 3015
Input Voltage	V _{IN}	-0.5	V _{DD} +0.5	V	All I/O pins
Output Current	lout		7	mA	SDIO pin

Recommended Operating Conditions

Parameter	Symbol	Minimum	Typical	Maximum	Units	Notes
Operating Temperature	T _A	0		40	°C	
Power Supply	V _{DD}	4.0	5.0	5.25	V	
Power Supply Rise Time	V _{RT}	0.005		100	ms	0 to V _{DD}
Supply Noise (Sinusoidal)	V _{NA}			100	mV p-p	10 kHz-50 MHz
Serial Port Clock Frequency	f _{SCLK}			3	MHz	50% duty cycle.
Distance from Lens Reference Plane to Tracking Surface (Z)	Z	2.3	2.4	2.5	mm	
Speed	S		30		ips	
Acceleration	а			8	g	
Load Capacitance	Cout			100	pF	SDIO

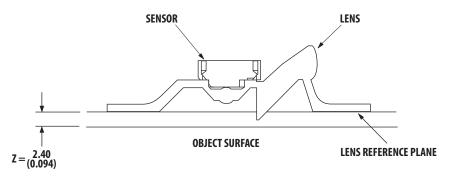
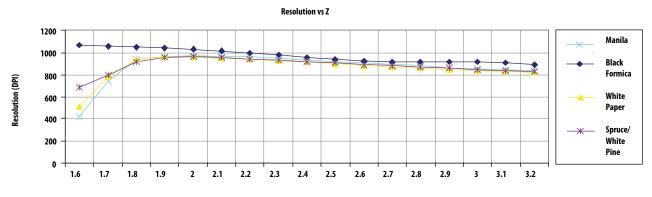


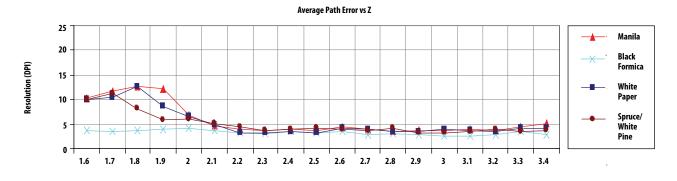
Figure 9. Distance from lens reference plane to tracking surface (Z).

AC Electrical Specifications


Parameter	Symbol	Minimum	Typical	Maximum	Units	Notes
Power Down	t _{PD}			50	ms	From PD (when bit 1 of register 0x0d is set) to low current
Wake from Power Down	twakeup	50		55	ms	From PD inactive (when NRESET pin is asserted high or write 0x5a to register 0x3a) to valid motion
Reset Pulse Width	t _{RESET}	250			ns	Active low.
Motion Delay after Reset	t _{MOT-RST}			50	ms	From NRESET pull high to valid mo tion, assuming V _{DD} and motion is present.
SDIO Rise Time	t _{r-SDIO}		150	300	ns	$C_{L} = 100 pF$
SDIO Fall Time	t _{f-SDIO}		150	300	ns	$C_{L} = 100 pF$
SDIO delay after SCLK	t _{DLY-SDIO}			120	ns	From SCLK falling edge to SDIO data valid, no load conditions.
SDIO Hold Time	t _{hold-SDIO}	100			ns	Data held until next falling SCLK edge.
SDIO Setup Time	t _{setup} -SDIO	120			ns	From data valid to SCLK rising edge.
SPI Time between Write Commands	tsww	30			μs	From rising SCLK for last bit of the first data byte, to rising SCLK for last bit of the second data byte.
SPI Time between Write and Read Commands	t _{SWR}	20			μs	From rising SCLK for last bit of the first data byte, to rising SCLK for last bit of the second address byte.
SPI Time between Read and Subsequent Commands	t _{SRW} t _{SRR}	500			ns	From rising SCLK for last bit of the first data byte, to falling SCLK for the first bit of the next address.
SPI Read Address-Data Delay	t _{SRAD}	4		10	μs	From rising SCLK for last bit of the address byte, to falling SCLK for first bit of data being read.
NCS Inactive after Motion Burst	t _{BEXIT}	250			ns	Minimum NCS inactive time after motion burst before next SPI usage.
NCS to SCLK Active	t _{NCS-SCLK}	120			ns	From NCS falling edge to first SCLK rising edge.
SCLK to NCS Inactive (for read operation)	tsclk-ncs	120			ns	From last SCLK rising edge to NCS rising edge, for valid SDIO data transfer.
SCLK to NCS Inactive (for write operation)	t _{SCLK-NCS}	20			us	From last SCLK rising edge to NCS rising edge, for valid SDIO data transfer
NCS to SDIO High-Z	t _{NCS-SDIO}			500	ns	From NCS rising edge to SDIO high-Z state.
Transient Supply Current	I _{DDT}			60	mA	Max supply current during a V_{DD} ramp from 0 to V_{DD} .

DC Electrical Specifications

Electrical Characteristics over reco	ommended operating conc	ditions. Typical values at 25 °C, $V_{DD} = 5.0$ V.


Parameter	Symbol	Minimum	Typical	Maximum	Units	Notes
DC Supply Current	I _{DD_AVG}		13.0	16.0	mA	Average sensor current, at max frame rate. No load on SDIO.
Idle Supply Current	I _{DD_IDLE}		11.0		mA	
Power Down Supply Current	I _{DD_PD}		180	250	μΑ	SCLK, NCS, NRESET, SDIO=VDD
Input Low Voltage	V _{IL}			0.5	V	SCLK, SDIO, NCS, NRESET
Input High Voltage	V _{IH}	V _{DD} – 0.5			V	SCLK, SDIO, NCS, NRESET
Input Hysteresis	VI_HYS		200		mV	SCLK, SDIO, NCS, NRESET
Input Leakage Current	l _{leak}		±1	±10	μΑ	Vin = V _{DD} -0.6 V, SCLK, SDIO, NCS, NRESET
XY_LED Current (pin voltage range should be greater than 0.8 V.)	I _{XY_LED}		45		mA	Average current at maximum frame rate.
XY_LED Current (pin voltage range should be greater than 0.8 V.)	Іхү_рк		45	51.5	mA	Peak current at maximum frame rate. Follow recommended schematics in Figure 8 to ensure DC current flowing through LED during run mode is within LED's absolute maximum limit.
Output Low Voltage	V _{OL}			0.7	V	l _{out} = 1 mA, SDIO
Output High Voltage	V _{OH}	V _{DD} -0.7			V	I _{out} = -1 mA, SDIO
Input Capacitance	C _{in}		50		рF	
Frame Rate	F _R		4500		fps	Internally adjusted by sensor (value shown is based on internal oscillator frequency of 28MHZ)

Typical Performance Characteristics

Distance from Lens Reference Plane to Tracking Surface, Z (mm)

Figure 10. Mean resolution vs. distance from lens reference plane to surface.

Distance from Lens Reference Plane to Tracking Surface, Z (mm)

Figure 11. Average error vs. distance (mm).

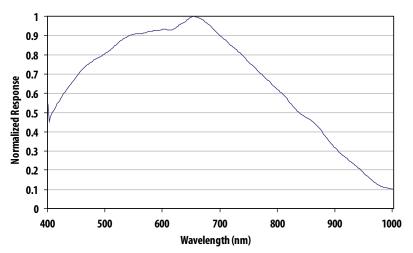


Figure 12. Relative wavelength responsivity.

LED Mode

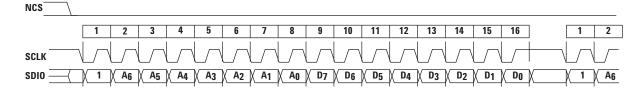
For optimized tracking performance, the LED is in DC mode when motion is detected, and ADNS-5050 will pulse the LED when the mouse is in idle state. To force the LED into always DC mode, kindly refer to register 0x22.

Synchronous Serial Port

The synchronous serial port is used to set and read parameters in the ADNS-5050, and to read out the motion information.

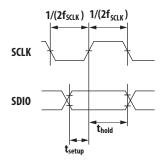
The port is a three wire serial port. The host micro-controller always initiates communication; the ADNS-5050 never initiates data transfers. SCLK, SDIO, and NCS may be driven directly by a micro-controller. The port pins may be shared with other SPI slave devices. When the NCS pin is high, the inputs are ignored and the output is tri-stated.

The lines that comprise the SPI port:


- SCLK: Clock input. It is always generated by the master (the micro-controller).
- SDIO: Input and Output data.
- NCS: Chip select input (active low). NCS needs to be low to activate the serial port; otherwise, SDIO will be high Z, and SDIO & SCLK will be ignored. NCS can also be used to reset the serial port in case of an error.

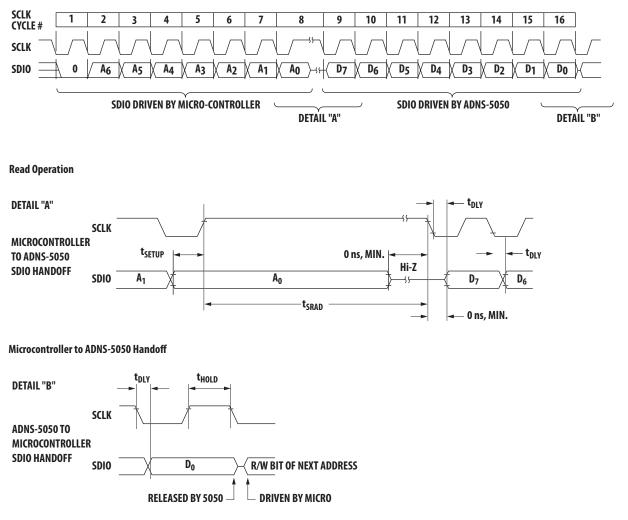
Chip Select Operation

The serial port is activated after NCS goes low. If NCS is raised during a transaction, the entire transaction is aborted and the serial port will be reset. This is true for all transactions. After a transaction is aborted, the normal address-to-data or transaction-to-transaction delay is still required before beginning the next transaction. To improve communication reliability, all serial transactions should be framed by NCS. In other words, the port should not remain enabled during periods of non-use because ESD and EFT/B events could be interpreted as serial communication and put the chip into an unknown state. In addition, NCS must be raised after each burst-mode transaction is complete to terminate burst-mode. The port is not available for further use until burst-mode is terminated.


Write Operation

Write operation, defined as data going from the microcontroller to the ADNS-5050, is always initiated by the micro-controller and consists of two bytes. The first byte contains the address (seven bits) and has a "1" as its MSB to indicate data direction. The second byte contains the data. The ADNS-5050 reads SDIO on rising edges of SCLK.

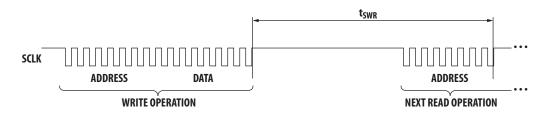
SDIO DRIVEN BY MICRO-CONTROLLER


Write Operation

SDIO Setup and Hold Time

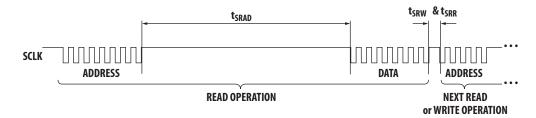
Read Operation

A read operation, defined as data going from the ADNS-5050 to the micro-controller, is always initiated by the micro-controller and consists of two bytes. The first byte contains the address, is sent by the micro-controller over SDIO, and has a "0" as its MSB to indicate data direction. The second byte contains the data and is driven by the ADNS-5050 over SDIO. The sensor outputs SDIO bits on falling edges of SCLK and samples SDIO bits on every rising edge of SCLK.

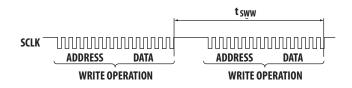

ADNS-5050 to Microcontroller Handoff

NOTE:

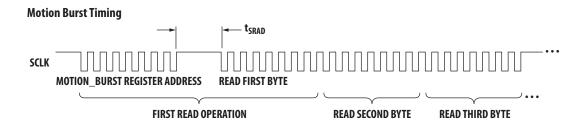
The $0.5/f_{SCLK}$ minimum high state of SCLK is also the minimum SDIO data hold time of the ADNS-5050. Since the falling edge of SCLK is actually the start of the next read or write command, the ADNS-5050 will hold the state of data on SDIO until the falling edge of SCLK.


Required Timing between Read and Write Commands

There are minimum timing requirements between read and write commands on the serial port.


Timing between Two Write Commands

If the rising edge of the SCLK for the last data bit of the second write command occurs before the required delay (t_{sww}) , then the first write command may not complete correctly.


Timing between Write and Read Commands

If the rising edge of SCLK for the last address bit of the read command occurs before the required delay (t_{SWR}), the write command may not complete correctly.

Timing between Read and Either Write or Subsequent Read Commands

During a read operation SCLK should be delayed at least t_{SRAD} after the last address data bit to ensure that the ADNS-5050 has time to prepare the requested data. The falling edge of SCLK for the first address bit of either the read or write command must be at least t_{SRR} or t_{SRW} after the last SCLK rising edge of the last data bit of the previous read operation.

Burst Mode Operation

Burst mode is a special serial port operation mode that may be used to reduce the serial transaction time for a motion read. The speed improvement is achieved by continuous data clocking to or from multiple registers without the need to specify the register address, and by not requiring the normal delay period between data bytes.

Burst mode is activated by reading the Motion_Burst register. The ADNS-5050 will respond with the contents of the Delta_X, Delta_Y, SQUAL, Shutter_Upper, Shutter_Lower, Maximum_Pixel and Pixel_Sum registers in that order. The burst transaction can be terminated anywhere in the sequence after the Delta_X value by bringing the NCS pin high. After sending the register address, the micro-controller must wait tSRAD and then begin reading data. All data bits can be read with no delay between bytes by driving SCLK at the normal rate. The data are latched into the output buffer after the last address bit is received. After the burst transmission is complete, the micro-controller must raise the NCS line for at least tBEXIT to terminate burst mode. The serial port is not available for use until it is reset with NCS, even for a second burst transmission.

Avago Technologies highly recommends the usage of burst mode operation in optical mouse sensor design applications.

Notes on Power-up and Reset

The ADNS-5050 does not perform an internal power up self-reset. There are two ways to reset the chip, either assert low NRESET pin or by writing 0x5a to register 0x3a. A full reset will thus be executed. Any register settings must then be reloaded.

During power-up there will be a period of time after the power supply is high but before any clocks are available. The table below shows the state of the various pins during power-up and reset.

State of Signal Pins After V_{DD} is Valid

During Reset	After Reset
Ignored	Functional
Ignored	Depends on NCS
Ignored	Depends on NCS
Hi-Z	Functional
	lgnored Ignored Ignored

Notes on Power Down

The ADNS-5050 can be set in Power Down mode by setting bit 1 of register 0x0d. In addition, the SPI port should not be accessed during power down. (Other ICs on the same SPI bus can be accessed, as long as the sensor's NCS pin is not asserted.) The table below shows the state of various pins during power down. There are 2 ways to exit power down, either assert low NRESET pin or by writing 0x5a to Register 0x3a. A full reset will thus be executed. Wait for t_{WAKEUP} before accessing the SPI port. Any register settings must then be reloaded.

Pin	Power Down Active	
NRESET	Functional	
NCS	Functional*	
SDIO	Functional*	
SCLK	Functional*	
XY_LED	Power Down	

* NCS pin must be held to 1(high) if SPI bus is shared with other devices. It can be in either state if the sensor is the only device in addition to the controller microprocessor.

NOTE: There is long wakeup time from power down.

Registers

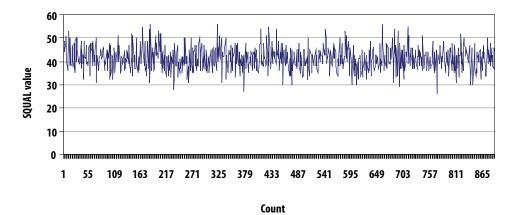
The ADNS-5050 registers are accessible via the serial port. The registers are used to read motion data and status as well as to set the device configuration.

Address	Register	Read/Write	Default Value	
0x00	Product_ID	R	0x12	
0x01	Revision_ID	R	0x01	
0x02	Motion	R	0x00	
0x03	Delta_X	R	Any	
0x04	Delta_Y	R	Any	
0x05	SQUAL	R	Any	
0x06	Shutter_Upper	R	Any	
0x07	Shutter_Lower	R	Any	
0x08	Maximum_Pixel	R	Any	
0x09	Pixel_Sum	R	Any	
0x0a	Minimum_Pixel	R	Any	
0x0b	Pixel_Grab	R/W	Any	
0x0c	Reserved			
0x0d	Mouse_Control	R/W	0x00	
0x0e – 0x18	Reserved			
0x19	Mouse_Control2	R/W	0x08	
0x1a – 0x21	Reserved			
0x22	LED_DC_Mode	R/W	0x00	
0x23 – 0x39	Reserved			
0x3a	Chip_Reset	W	N/A	
0x3b – 0x3d	Reserved			
0x3e	Product ID2	R	0x26	
0x3f	Inv_Rev_ID	R	0xfe	
0x40 – 0x62	Reserved			
0x63	Motion_Burst	R	0x00	

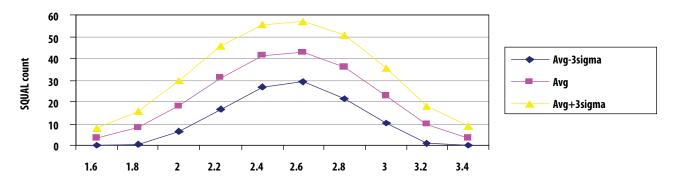
Product_ID		Address	: 0x00						
Access: Read		Reset \	/alue: 0x12						
	Bit	7	6	5	4	3	2	1	0
	Field	PID ₇	PID ₆	PID ₅	PID ₄	PID ₃	PID ₂	PID ₁	PID ₀
Data Type:	8-Bit u	nsigned inte	eger						
	This re PID is l	gister value ocated at Pr	is made to oduct_ID2	Address 0x	3e). The valu	020-EN for c ues in these k is function	registers do		
Data Type: USAGE: Revision_ID	This re PID is l	gister value ocated at Pr	is made to oduct_ID2 ify if the ser	Address 0x	3e). The valu	ues in these	registers do		
USAGE: Revision_ID	This re PID is l	gister value ocated at Pr used to ver Addres	is made to oduct_ID2 ify if the ser	Address 0x	3e). The valu	ues in these	registers do		
USAGE:	This re PID is l	gister value ocated at Pr used to ver Addres	is made to boot to boo	Address 0x	3e). The valu	ues in these	registers do		

USAGE: This register contains the IC revision. It is subject to change when new IC versions are released.

Motion		Addres	s: 0x02						
Access: Read/	/Write	Reset V	alue: 0x00						
	Bit	7	6	5	4	3	2	1	0
	Field	MOT	Reserved	Reserved	Reserved	Reserved	Reserved	Reserved	Reserved
Data Type:	Bit field	ł.							
USAGE:	the MO Read th Writing)T bit is set, [.] nis register k	vs the user to then the user before reading o this register	should read the Delta_2	l registers 0» X and Delta <u></u>	<03 and 0x0 _Y registers	4 to get the	accumulate	ed motion
USAGE:	the MO Read th Writing)T bit is set, nis register k anything to not saved.	then the user before reading	should read the Delta_2	l registers 0» X and Delta <u></u>	<03 and 0x0 _Y registers	4 to get the	accumulate	ed motion
USAGE:	the MO Read th Writing byte is)T bit is set, nis register k anything to not saved.	then the user before reading o this register Description	should read the Delta_2	l registers 0> X and Delta 10T bit, Delt	<03 and 0x0 _Y registers	4 to get the	accumulate	ed motion
USAGE:	the MO Read th Writing byte is Field Nar)T bit is set, nis register k anything to not saved.	then the user before reading o this register Description	should read the Delta_2 clears the M	l registers 0> X and Delta 10T bit, Delt	<03 and 0x0 _Y registers	4 to get the	accumulate	ed motion
USAGE:	the MO Read th Writing byte is Field Nar)T bit is set, nis register k anything to not saved.	then the user before reading this register Description Motion since 0 = No motion	should read the Delta_2 clears the M	l registers 0> X and Delta 10T bit, Delt t	x03 and 0x0 _Y registers. :a_X and De	4 to get the Ita_Y registo	accumulate	ed motion tten data


Access: Read		Addre	ess: 0x03						
Access. Neau		Reset	Value: 0x00						
	Bit	7	б	5	4	3	2	1	0
	Field	X ₇	X ₆	X ₅	X4	X ₃	X ₂	X ₁	X ₀
Data Type:	Eight bi	it 2's comp	plement num	nber.					
JSAGE:	X move the regi		ounts since la	ast report	. Absolute	value is dete	ermined by rea	solution. Re	eading clea
	MOTION	-128	-127	-2	-1) +1	+2	+126	+127
	DELTA_X	80	81	FE	FF (i 10 01	02	7E	7F
—			s: 0x04						
—			s : 0x04 Value: 0x00						
—	Bit			5	4	3	2	1	0
—	Bit Field	Reset	Value: 0x00	5 Y ₅	4 Y ₄	3 Y ₃	2 Y ₂	1 Y ₁	0 Y ₀
Access: Read	Field	Reset 7 Y ₇	Value: 0x00 6	Y ₅					
Delta_Y Access: Read Data Type: USAGE:	Field Eight bi	Reset 7 Y ₇ it 2's comp ment is co	Value: 0x00 <u>6</u> Y ₆ Dlement num	Y ₅ nber.	Y ₄	Y ₃		Y ₁	Y ₀
Access: Read Data Type:	Field Eight bi Y move	Reset 7 Y ₇ it 2's comp ment is co	Value: 0x00 <u>6</u> Y ₆ Dlement num	Y ₅ nber.	Y ₄	Y ₃	Y ₂	Y ₁	Y ₀
Access: Read Data Type:	Field Eight bi Y move the regi	Reset 7 Y ₇ it 2's comp ment is co ister.	Value: 0x00 6 Y ₆ Dlement num Dunts since la	Y ₅ nber. ast report	Y ₄	Y ₃ value is dete	Y ₂	Y ₁ solution. Re	Y ₀ eading clear

NOTE: Register 0x03 MUST be read prior to Register 0x04.


SQUAL		Address	: 0x05						
Access: Read		Reset \	/alue: 0x00						
	Bit	7	б	5	4	3	2	1	0
	Field	SQ7	SQ ₆	SQ ₅	SQ4	SQ ₃	SQ ₂	SQ ₁	SQ ₀

Data Type: Upper 8 bits of a 9-bit unsigned integer.

USAGE: SQUAL (Surface Quality) is a measure of the number of valid features visible by the sensor in the current frame. The maximum SQUAL register value is 128. Since small changes in the current frame can result in changes in SQUAL, variations in SQUAL when looking at a surface are expected. The graph below shows few sequentially acquired SQUAL values, while a sensor was moved slowly over white paper. SQUAL is nearly equal to zero, if there is no surface below the sensor. SQUAL is typically maximized when the navigation surface is at the optimum distance from the imaging lens (the nominal Z-height).

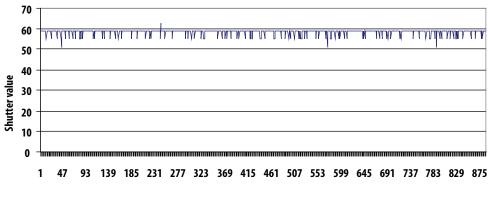

Delta from Lens Reference Plane to Tracking Surface, Z (mm)

Figure 14. Mean squal vs. Z (white paper).

Shutter_Upper Access: Read		Addres Reset	s: 0x06 Value: 0x00						
	Bit	7	6	5	4	3	2	1	0
	Field	S ₁₅	S ₁₄	S ₁₃	S ₁₂	S ₁₁	S ₁₀	S ₉	S ₈
Shutter_Lower		Addres	s: 0x07						
Access: Read		Reset	Value: 0x00						
	Bit	7	6	5	4	3	2	1	0
	Field	S ₇	S ₆	S ₅	S ₄	S ₃	S ₂	S ₁	S ₀

Data Type: Sixteen bit unsigned integer.

USAGE: Units are clock cycles. They must be read in this order: Read 0x06 first, then 0x07. The shutter is continuously adjusted to keep the average and maximum pixel values within normal operating range. The shutter value is automatically adjusted.

Count

Figure 15. Shutter (white paper).

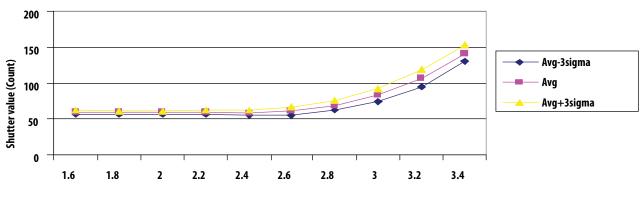
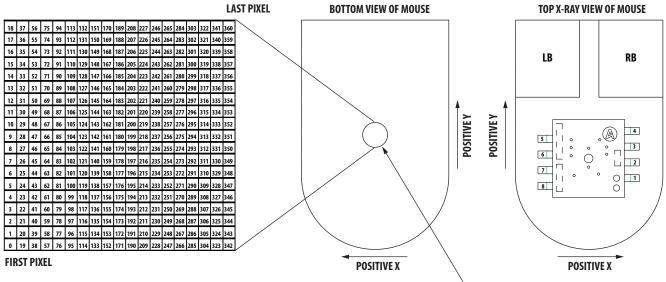


Figure 16. Mean shutter vs. Z (white paper).

Maximum_Pixel	Address: 0x08 Reset Value: 0x00											
Access: Read	Reset Value: 0x00											
	Bit	7	6	5	4	3	2	1	0			
	Field	MP ₀	MP ₆	MP ₅	MP ₄	MP ₃	MP ₂	MP ₁	MP ₀			
Data Type:	Seven-	bit number	:									
USAGE:			lue in curre ry with ever		inimum valı	ue = 0, maxi	imum value	= 127. The	maximum			
Pixel_Sum		Address	:: 0x09									
Pixel_Sum Access: Read		Reset	Value: 0x00									
	Bit	7	6	5	4	3	2	1	0			
	Bit Field	7 AP ₇	6 AP ₆	5 AP ₅	4 AP ₄	3 AP ₃	2 AP ₂	1 AP ₁	0 AP ₀			
Data Type:	Field High 8 This re value i	AP ₇ bits of an u gister is the s 45,847, bu		AP ₅ -bit integer. ed pixel valu 14:7] are rep	AP ₄ the from the l	AP ₃ ast image t ay be descri	AP ₂ aken. The m bed as the f	AP ₁ aximum acc ull sum divio	AP ₀ cumulator ded by 1.4			
Data Type: USAGE: Minimum_Pixel Access: Read	Field High 8 This re value i The ma	AP ₇ bits of an u gister is the s 45,847, bu aximum reg Address	AP ₆ Insigned 15- accumulate It only bits [jister value i	AP ₅ -bit integer. ed pixel valu 14:7] are rep	AP ₄ the from the l	AP ₃ ast image t ay be descri	AP ₂ aken. The m bed as the f	AP ₁ aximum acc ull sum divio	AP ₀ cumulator ded by 1.4			
Data Type: USAGE: Minimum_Pixel	Field High 8 This re value i The ma	AP ₇ bits of an u gister is the s 45,847, bu aximum reg Address	AP ₆ Insigned 15- accumulate It only bits [jister value i	AP ₅ -bit integer. ed pixel valu 14:7] are rep	AP ₄ the from the l	AP ₃ ast image t ay be descri	AP ₂ aken. The m bed as the f	AP ₁ aximum acc ull sum divio	AP ₀ cumulator ded by 1.4			

USAGE: Minimum Pixel value in current frame. Minimum value = 0, maximum value = 127. The minimum pixel value can vary with every frame.


Pixel_Grab Access: Read	d/Write	Address Reset \	: 0x0b /alue: 0x00						
	Bit	7	6	5	4	3	2	1	0
	Field	Valid	PD ₆	PD ₅	PD ₄	PD ₃	PD ₂	PD ₁	PD ₀

Data Type: Eight-bit word.

USAGE: The pixel grabber captures 1 pixel per frame. If there is a valid pixel in the grabber when this register is read, the MSB will be set, an internal counter will incremented to capture the next pixel and the grabber will be armed to capture the next pixel. It will take 361 reads to upload the complete image. Any write to this register will reset and arm the grabber to grab pixel 0 on the next image.

Physical Pixel Address Map - readout order of the array

(looking through the sensor aperture at the bottom of the package)

HOLE AT MOUSE BOTTOM COVER FOR LENS

Reserved

Address: 0x0c

Mouse_control		Address: 0	(Od						
Access: Read/V	Vrite	Reset Val	ue: 0x00						
	Bit	7	6	5	4	3	2	1	0
	Field	Reserved	Reserved	Reserved	Reserved	Reserved	Reserved	PD	RES
	nesonario	on and Powe	er Down info	ormation ca	n be accesse	ed or to be e	edited by th	is register.	
				ormation ca	n be accesse	ed or to be e	edited by th	is register.	
	Field Name	e De	escription	ormation ca	n be accesse	ed or to be e	edited by th	is register.	
		e De	escription	ormation ca	n be accesse	ed or to be e	edited by th	is register.	
	Field Name	e De Po O :	escription ower Down = Normal		n be accesse	ed or to be e	edited by th	is register.	
	Field Name	e De Po O :	escription		n be accesse	ed or to be e	edited by th	is register.	
	Field Name	e De Pe 0 : 1	escription ower Down = Normal	wn	n be access	ed or to be e	edited by th	is register.	

1 = 1000 cpiReservedReserved

Reserved

Address: 0x0e-0x18

Mouse_Control2		Address: 0	x19						
Access: Write		Reset Val	ue: 0x08						
	Bit	7	6	5	4	3	2	1	0
	Field	Reserved	Reserved	Reserved	RES_EN	RES	RES	RES	RES
Data Tura	C: alut la	: 4							
Data Type:	Eight b	oit number							
USAGE:	Resolu	tion informati	on can be a	ccessed or t	o be edited	d by this re	egister.		
	Field N	lame l	Description						
	Field N RES_E	EN :	Description = 0 Disable RE = 1 Enable R						
	RES_E	EN =	= 0 Disable RE	ES[3:0] setti					
		EN = = 3:0] =	= 0 Disable RE = 1 Enable R	ES[3:0] setti 25 CPI					
	RES_E	EN = = 3:0] = =	= 0 Disable RE = 1 Enable R = 0b0001: 12	ES[3:0] setti 25 CPI 50 CPI					
	RES_E	EN = = 3:0] = =	= 0 Disable RE = 1 Enable R = 0b0001: 12 = 0b0010: 2	ES[3:0] setti 25 CPI 50 CPI 75 CPI					
	RES_E	EN = = 3:0] = = =	= 0 Disable RE = 1 Enable R = 0b0001: 12 = 0b0010: 25 = 0b0011: 3	ES[3:0] setti 25 CPI 50 CPI 75 CPI 00 CPI					
	RES_E	EN = = 3:0] = = = =	= 0 Disable RE = 1 Enable R = 0b0001: 12 = 0b0010: 22 = 0b0011: 3 = 0b0100: 50	ES[3:0] setti 25 CPI 50 CPI 75 CPI 00 CPI 25 CPI 25 CPI					
	RES_E	EN = 3:0] = = = = =	= 0 Disable RE = 1 Enable R = 0b0001: 12 = 0b0010: 22 = 0b0011: 3 = 0b0100: 50 = 0b0100: 52 = 0b0101: 62 = 0b0111: 8	ES[3:0] setti 25 CPI 50 CPI 75 CPI 00 CPI 25 CPI 50 CPI 75 CPI 75 CPI					
	RES_E	EN = 3:0] = = = = = = =	O Disable RE I Enable R O b0001: 12 O b0010: 22 O b0011: 3 O b0100: 50 O b0100: 50 O b0101: 62 O b0110: 72 O b0111: 82 O b0110: 100 O b00: 100	ES[3:0] setti 25 CPI 50 CPI 75 CPI 00 CPI 25 CPI 50 CPI 75 CPI 0 CPI					
	RES_E	EN = 3:0] = = = = = = = = = = = = = = = = = = =	 0 Disable RE: 1 Enable R 0 0001: 12 0 00010: 22 0 00011: 3 0 000100: 50 0 00101: 62 0 001101: 62 0 00111: 83 0 001111: 83 0 00100: 100 0 001001: 1 	ES[3:0] setti 25 CPI 50 CPI 75 CPI 00 CPI 25 CPI 50 CPI 75 CPI 0 CPI 125 CPI					
	RES_E	EN = 3:0] = = = = = = = = = = = = = = = = = = =	O Disable RE I Enable R O b0001: 12 O b0010: 22 O b0011: 3 O b0100: 50 O b0100: 50 O b0101: 62 O b0110: 72 O b0111: 82 O b0110: 100 O b00: 100	ES[3:0] setti 25 CPI 50 CPI 75 CPI 25 CPI 25 CPI 50 CPI 75 CPI 0 CPI 125 CPI 250 CPI 250 CPI					

NOTE: Bit 4 MUST be set to '1' before the resolution set in this register takes effect.

Reserved		Address	s: 0x1a-0x21						
LEDDCMode		Address	:: 0x22						
Access: Read/\	Write	Reset	/alue: 0x00						
	Bit	7	6	5	4	3	2	1	0
	Field	LM ₇	LM ₆	LM 5	LM ₄	LM ₃	LM ₂	LM ₁	LM ₀
Data Type:	8-Bit u	nsigned int	eger						
USAGE:	Write (0x80 to this	register to fo	orce LED int	o Always D0	C mode.			
Reserved		Address	:: 0x23-0x39						
Chip_Reset		Address							
Access: Write		Reset	Value: 0x00						
	Bit	7	6	5	4	3	2	1	0
	Bit Field	7 CR ₇	6 CR ₆	5 CR 5	4 CR ₄	3 CR ₃	2 CR ₂	1 CR ₁	0 CR ₀
Data Type:	Field		CR ₆						
Data Type: USAGE:	Field 8-Bit u	CR ₇ nsigned inte	CR ₆	CR 5					
	Field 8-Bit u	CR7 nsigned inte 0x5a to initia	CR ₆	CR 5					
USAGE:	Field 8-Bit u	CR7 nsigned inte 0x5a to initia	CR ₆ eger ate chip RES	CR 5					
USAGE: Reserved Product_ID2	Field 8-Bit u	CR7 nsigned inte Dx5a to initia Address Address	CR ₆ eger ate chip RES	CR 5					
USAGE: Reserved	Field 8-Bit u	CR7 nsigned inte Dx5a to initia Address Address	CR 6 eger ate chip RES :: 0x23-0x39 :: 0x3e	CR 5					

USAGE: This register contains a unique identification assigned to the ADNS-5050. The value in this register does not change; it can be used to verify that the serial communications link is functional.

Inv_Rev_ID			Addr	ess: 0x3f							
Access: Read	Reset Value: 0xfe										
	Bit	7	6	5	4	3	2	1	0		
	Field	RRID ₇	RRID ₆	RRID ₅	RRID ₄	RRID ₃	RRID ₂	RRID ₁	RRID ₀		
Data Type:	8-Bit u	nsigned inte	ger								
USAGE:	This re	gister contai	ns the inver	rse of the re	vision ID wh	nich is locate	ed at registe	r 0x01			
Reserved		Addres	s: 0x40-0x62	2							
Motion_Burst		Addres	s: 0x63								
		Reset V	alue: 0x00								
		nesetv									
	Bit	7	6	5	4	3	2	1	0		
	Bit Field		6 MB ₆	5 MB ₅	4 MB ₄	3 MB ₃	2 MB ₂	1 MB ₁	0 MB ₀		
Access: Read Data Type:		7 MB ₇									

For product information and a complete list of distributors, please go to our website: www.avagotech.com

Avago, Avago Technologies, and the A logo are trademarks of Avago Technologies in the United States and other countries. Data subject to change. Copyright © 2005-2012 Avago Technologies. All rights reserved. AV02-1045EN - April 25, 2012

