
BOURNS®

- High Current Triacs
- 25 A RMS
- Glass Passivated Wafer
- 400 V to 800 V Off-State Voltage
- 175 A Peak Current
- Max I_{GT} of 50 mA (Quadrants 1 3)

Pin 2 is in electrical contact with the mounting base.

absolute maximum ratings over operating case temperature (unless otherwise noted)

RATING	SYMBOL	VALUE	UNIT
TIC263D		400	
Depetitive peak off state voltage (see Nate 1)		600	V
Repetitive peak off-state voltage (see Note 1) TIC 263S	VDRM	700	
TIC263N		800	
Full-cycle RMS on-state current at (or below) 60°C case temperature (see Note 2)	I _{T(RMS)}	25	A
Peak on-state surge current full-sine-wave at (or below) 25°C case temperature (see Note 3)	I _{TSM}	175	A
Peak gate current	I _{GM}	±1	A
Operating case temperature range	т _с	-40 to +110	°C
Storage temperature range	T _{stg}	-40 to +125	°C
Lead temperature 1.6 mm from case for 10 seconds	TL	230	°C

NOTES: 1. These values apply bidirectionally for any value of resistance between the gate and Main Terminal 1.

2. This value applies for 50-Hz full-sine-wave operation with resistive load. Above 60°C derate linearly to 110°C case temperature at the rate of 500mA/°C.

3. This value applies for one 50-Hz full-sine-wave when the device is operating at (or below) the rated value of peak reverse volta ge and on-state current. Surge may be repeated after the device has returned to original thermal equilibrium.

electrical characteristics at 25°C case temperature (unless otherwise noted)

	PARAMETER	TEST CONDITIONS			MIN	ТҮР	MAX	UNIT
I _{DRM}	Repetitive peak off-state current	V _D = Rated V _{DRM}	$I_{G} = 0$	T _C = 110°C			±2	mA
I _{GT}		V _{supply} = +12 V†	$R_L = 10 \Omega$	t _{p(g)} > 20 μs		15	50	mA
	Gate trigger	V _{supply} = +12 V†	$R_L = 10 \Omega$	t _{p(g)} > 20 μs		-30	-50	
	current	$V_{supply} = -12 V^{\dagger}$	$R_L = 10 \Omega$	t _{p(g)} > 20 μs		-20	-50	
		V _{supply} = -12 V†	$R_L = 10 \Omega$	t _{p(g)} > 20 μs		32		
V _{GT}		V _{supply} = +12 V†	$R_L = 10 \Omega$	t _{p(g)} > 20 μs		0.8	2	v
	Gate trigger	$V_{supply} = +12 V^{\dagger}$	$R_L = 10 \Omega$	t _{p(g)} > 20 μs		-0.8	-2	
	voltage	V _{supply} = -12 V†	$R_L = 10 \Omega$	t _{p(g)} > 20 μs		-0.8	-2	
		V _{supply} = -12 V†	$R_L = 10 \Omega$	t _{p(g)} > 20 μs		0.8	2	
V _T	On-state voltage	I _T = ±35.2 A	l _G = 50 mA	(see Note 4)		±1.5	±1.7	V

† All voltages are with respect to Main Terminal 1.

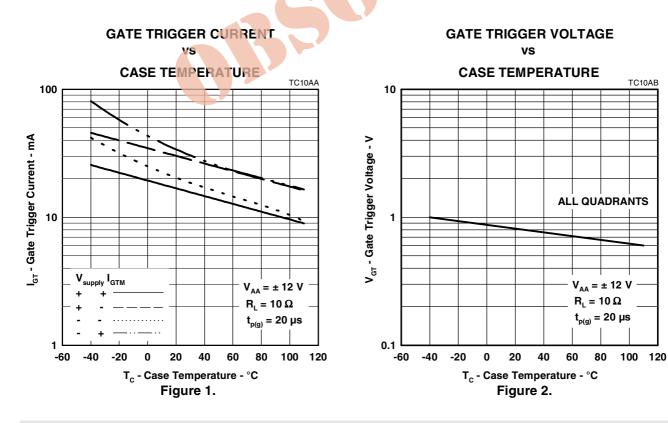
NOTE 4: This parameter must be measured using pulse techniques, $t_p = \le 1$ ms, duty cycle ≤ 2 %. Voltage-sensing contacts separate from the current carrying contacts are located within 3.2 mm from the device body.

PRODUCT INFORMATION

DECEMBER 1971 - REVISED SEPTEMBER 2002 Specifications are subject to change without notice.

electrical characteristics at 25°C case temperature (unless otherwise noted) (continued)

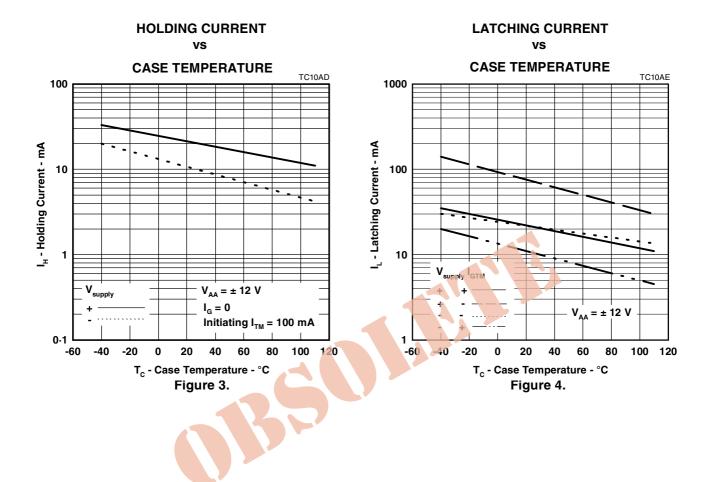
	PARAMETER		TEST CONDITIONS			ТҮР	MAX	UNIT
l	Holding current	V _{supply} = +12 V†	l _G = 0	Init' I _T = 100 mA		20	40	mA
Ч		V _{supply} = -12 V†	$I_{G} = 0$	Init' I _T = -100 mA		-10	-40	
IL.	Latching current	V _{supply} = +12 V†	(see Note 5)			20		mA
		V _{supply} = -12 V†			-20			
dv/dt	Critical rate of rise of	V _D = Rated V _D	I _G = 0	T _C = 110°C		±450		V/µs
uv/ut	off-state voltage			1 _C = 110 0				
dy/dt	Critical rise of	V _D = Rated V _D		$T_{\rm C} = 80^{\circ}{\rm C}$		±1		V/µs
dv/dt _(c)	commutation voltage	$di/dt = 0.5 I_{T(RMS)}/ms$		$I_T = 1.4 I_{T(RMS)}$				v/µs
di/dt	Critical rate of rise of	V _D = Rated V _D	I _{GT} = 50 mA	$I_{GT} = 50 \text{ mA}$ $T_{C} = 110^{\circ}\text{C}$		±100		A/µs
	on -state current	di _G /dt = 50 mA/µs		1 _C = 110 0				-π/μ5


† All voltages are with respect to Main Terminal 1.

NOTE 5: The triacs are triggered by a 15-V (open-circuit amplitude) pulse supplied by a generator with the following characteristics: $R_G = 100 \ \Omega$, $t_{p(g)} = 20 \ \mu s$, $t_r = \le 15 \ ns$, $f = 1 \ kHz$.

thermal characteristics

PARAMETER			TYP	MAX	UNIT
$R_{\theta JC}$	Junction to case thermal resistance			1.52	°C/W
R_{\thetaJA}	Junction to free air thermal resistance			36	°C/W



PRODUCT INFORMATION

DECEMBER 1971 - REVISED SEPTEMBER 2002 Specifications are subject to change without notice.

TYPICAL CHARACTERISTICS

PRODUCT INFORMATION