
- Sensitive Gate Triacs
- 2.5 A RMS
- Glass Passivated Wafer
- 400 V to 700 V Off-State Voltage
- Max I_{GT} of 5 mA (Quadrant 1)

Pin 2 is in electrical contact with the mounting base.

MDC2ACA

absolute maximum ratings over operating case temperature (unless otherwise noted)

RATING	SYMBOL	VALUE	UNIT			
	TIC201D		400			
Repetitive peak off-state voltage (see Note 1)	TIC201M	V_{DRM}	600	V		
	TIC201S		700			
Full-cycle RMS on-state current at (or below) 85°C case temperature (see Note	2)	T(RMS)	MS) 2.5			
Peak on-state surge current full-sine-wave at (or below) 25°C case temperature	(see Note 3)	I _{TSM}	12	Α		
Peak gate current		I _{GM}	±0.2	Α		
Peak gate power dissipation at (or below) 85°C case temperature (pulse width ≤ 2	200 μs)	P_{GM}	1.3	W		
Average gate power dissipation at (or below) 85°C case temperature (see Note 4)	$P_{G(AV)}$	0.3	W		
Operating case temperature range		T _C	-40 to +110	°C		
Storage temperature range		T _{stg}	-40 to +125	°C		
Lead temperature 1.6 mm from case for 10 seconds		T_L	230	°C		

- NOTES: 1. These values apply bidirectionally for any value of resistance between the gate and Main Terminal 1.
 - 2. This value applies for 50-Hz full-sine-wave operation with resistive load. Above 85°C derate linearly to 110°C case temperature at the rate of 100 mA/°C.
 - 3. This value applies for one 50-Hz full-sine-wave when the device is operating at (or below) the rated value of on-state current. Surge may be repeated after the device has returned to original thermal equilibrium. During the surge, gate control may be lost.
 - 4. This value applies for a maximum averaging time of 20 ms.

electrical characteristics at 25°C case temperature (unless otherwise noted)

	PARAMETER	TEST CONDITIONS				TYP	MAX	UNIT
I _{DRM}	Repetitive peak off-state current	$V_D = \text{rated } V_{DRM}$	I _G = 0	T _C = 110°C			±1	mA
I _{GT}	Gate trigger current	$V_{supply} = +12 \text{ V}\dagger$ $V_{supply} = +12 \text{ V}\dagger$ $V_{supply} = -12 \text{ V}\dagger$ $V_{supply} = -12 \text{ V}\dagger$	$R_{L} = 10 \Omega$ $R_{L} = 10 \Omega$ $R_{L} = 10 \Omega$ $R_{L} = 10 \Omega$	$t_{p(g)} > 20 \mu s$ $t_{p(g)} > 20 \mu s$ $t_{p(g)} > 20 \mu s$ $t_{p(g)} > 20 \mu s$			5 -8 -10 25	mA

[†] All voltages are with respect to Main Terminal 1.

electrical characteristics at 25°C case temperature (unless otherwise noted) (continued)

	PARAMETER	TEST CONDITIONS				TYP	MAX	UNIT
		V _{supply} = +12 V†	$R_L = 10 \Omega$	t _{p(g)} > 20 μs		0.7	2.5	
V.	Gate trigger	$V_{\text{supply}} = +12 \text{ V}\dagger$	$R_L = 10 \Omega$	$t_{p(g)} > 20 \mu s$		-0.7	-2.5	V
V _{GT}	voltage	$V_{\text{supply}} = -12 \text{ V}\dagger$	$R_L = 10 \Omega$	$t_{p(g)} > 20 \mu s$		-0.7	-2.5	v
		$V_{\text{supply}} = -12 \text{ V}\dagger$	$R_L = 10 \Omega$	$t_{p(g)} > 20 \ \mu s$		0.7		
V _T	On-state voltage	I _T = ±3.5 A	I _G = 50 mA	(see Note 5)			±1.9	V
	Holding current	$V_{\text{supply}} = +12 \text{ V}\dagger$	$I_G = 0$			30	mA	
Ιн		$V_{\text{supply}} = -12 \text{ V}\dagger$	$I_G = 0$	Init' $I_{TM} = -100 \text{ mA}$			-30	ША
l ₁	Latching current	$V_{\text{supply}} = +12 \text{ V}^{\dagger}$	(see Note 6)				40	mA
'L		$V_{\text{supply}} = -12 \text{ V}^{\dagger}$	(300 14010 0)				-40	IIIA
dv/dt	Critical rate of rise of	V = Bated V	I ₂ = 0	T _C = 110°C		±20		V/µs
av/at	dv/dt $v_{DRM} = Rated V_{DRM}$ $l_G = 0$		1C = 110 O		120		ν/μ3	
dv/dt _(c)	Critical rise of	V - Rated V	Ι - +3.5.Δ	T _C = 85°C	±1	±4		V/µs
uv/ut(c)	commutation voltage	V _{DRM} = Rated V _{DRM}	TRM - ±3.5 A	1C - 00 C	_ <u></u>	±4		V/μS

[†] All voltages are with respect to Main Terminal 1.

thermal characteristics

PARAMETER			7		MIN	TYP	MAX	UNIT
R _{0JC} Junction to case thermal resistance							10	°C/W
R _{0JA} Junction to free air thermal resistance	15						62.5	°C/W

NOTES: 5. This parameter must be measured using pulse techniques, $t_p = \le 1$ ms, duty cycle ≤ 2 %. Voltage-sensing contacts separate from the current carrying contacts are located within 3.2 mm from the device body.

^{6.} The triacs are triggered by a 15-V (open circuit amplitude) pulse supplied by a generator with the following characteristics: $R_G = 100 \ \Omega$, $t_{p(g)} = 20 \ \mu s$, $t_r = \le 15 \ ns$, $f = 1 \ kHz$.