BOURNS®

- 5 A Continuous On-State Current
- 20 A Surge-Current
- Glass Passivated Wafer
- 400 V to 800 V Off-State Voltage
- Max I_{GT} of 1 mA

Pin 2 is in electrical contact with the mounting base.

MDC1ACA

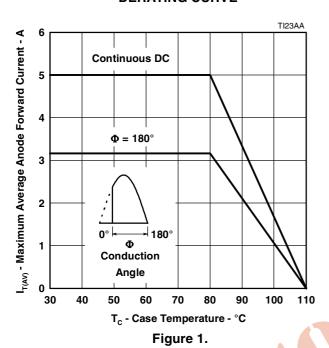
absolute maximum ratings over operating case temperature (unless otherwise noted)

RATING		SYMBOL	VALUE	UNIT
Repetitive peak off-state voltage (see Note 1)	TIC108D		400	
	TIC108M	V	600	V
	TIC108S	V_{DRM}	700	
	TIC108N		800	
Repetitive peak reverse voltage	TIC108D		400	V
	TIC108M	V	600	
	TIC108S	V_{RRM}	700	
	TIC108N		800	
Continuous on-state current at (or below) 80°C case temperature (see Note 2)		I _{T(RMS)}	5	Α
Average on-state current (180° conduction angle) at (or below) 80°C case temperature		1	3.2	Α
(see Note 3)		I _{T(AV)}	5.2	^
Surge on-state current (see Note 4)		I _{TSM}	20	Α
Peak positive gate current (pulse width ≤ 300 µs)		I _{GM}	0.2	Α
Peak gate power dissipation (pulse width ≤ 300 µs)		P_{GM}	1.3	W
Average gate power dissipation (see Note 5)		$P_{G(AV)}$	0.3	W
Operating case temperature range		T _C	-40 to +110	°C
Storage temperature range		T _{stg}	-40 to +125	°C
Lead temperature 1.6 mm from case for 10 seconds		T _L	230	°C

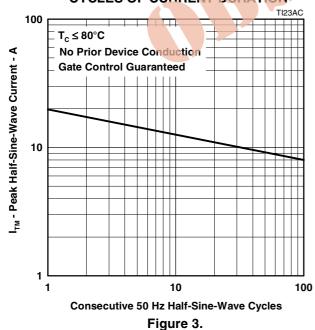
- NOTES: 1. These values apply when the gate-cathode resistance R_{GK} = 1 $k\Omega$.
 - 2. These values apply for continuous dc operation with resistive load. Above 80°C derate linearly to zero at 110°C.
 - 3. This value may be applied continuously under single phase 50 Hz half-sine-wave operation with resistive load. Above 80°C derate linearly to zero at 110°C.
 - 4. This value applies for one 50 Hz half-sine-wave when the device is operating at (or below) the rated value of peak reverse voltage and on-state current. Surge may be repeated after the device has returned to original thermal equilibrium.
 - 5. This value applies for a maximum averaging time of 20 ms.

electrical characteristics at 25°C case temperature (unless otherwise noted)

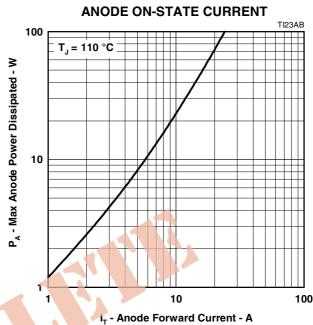
	PARAMETER		TEST CONDITION	ONS	MIN	TYP	MAX	UNIT
I _{DRM}	Repetitive peak off-state current	V _D = rated V _{DRM}	R _{GK} = 1 kΩ	T _C = 110°C			400	μА
I _{RRM}	Repetitive peak reverse current	V _R = rated V _{RRM}	I _G = 0	T _C = 110°C			1	mA
I _{GT}	Gate trigger current	V _{AA} = 12 V	$R_L = 100 \Omega$	t _{p(g)} ≥ 20 μs	0.2	0.5	1	mA
		$V_{AA} = 12 \text{ V}$ $t_{p(g)} \ge 20 \mu\text{s}$	$R_L = 100 \Omega$ $R_{GK} = 1 k\Omega$	T _C = - 40°C			1.2	
V _{GT} Gate trigger volt	Gate trigger voltage	$V_{AA} = 12 \text{ V}$ $t_{p(g)} \ge 20 \mu\text{s}$	$R_L = 100 \Omega$ $R_{GK} = 1 k\Omega$		0.4	0.6	1	٧
		$V_{AA} = 12 \text{ V}$ $t_{p(g)} \ge 20 \mu\text{s}$	$R_L = 100 \Omega$ $R_{GK} = 1 k\Omega$	T _C = 110°C	0.2			
I _H	Holding current	$V_{AA} = 12 \text{ V}$ Initiating $I_T = 20 \text{ mA}$	$R_{GK} = 1 k\Omega$	T _C = - 40°C		3.5	15	mA
H Holding C	riolaling durient	$V_{AA} = 12 \text{ V}$ Initiating $I_T = 20 \text{ mA}$	$R_{GK} = 1 k\Omega$			2	10	1117 (
V _T	On-state voltage	I _T = 5 A	(see Note 6)			1.3	1.7	V
dv/dt	Critical rate of rise of off-state voltage	V _D = rated V _D	R _{GK} = 1 kΩ	T _C = 110°C		20		V/µs


NOTE 6: This parameter must be measured using pulse techniques, t_p = 300 µs, duty cycle ≤ 2 %. Voltage sensing-contacts, separate from the current carrying contacts, are located within 3.2 mm from the device body.

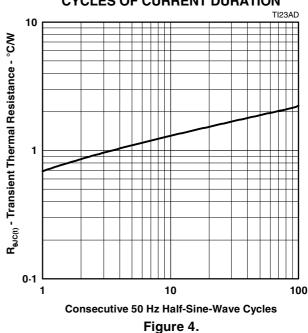
thermal characteristics


PARAMETER	MIN	TYP	MAX	UNIT
R _{0JC} Junction to case thermal resistance			3.5	°C/W
R _{eJA} Junction to free air thermal resistance			62.5	°C/W

THERMAL INFORMATION


AVERAGE ANODE ON-STATE CURRENT DERATING CURVE

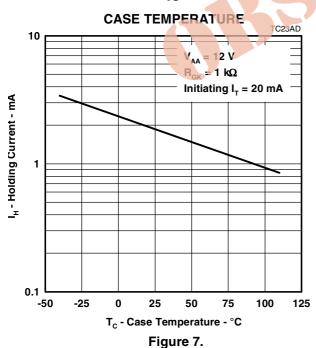
SURGE ON-STATE CURRENT vs CYCLES OF CURRENT DURATION



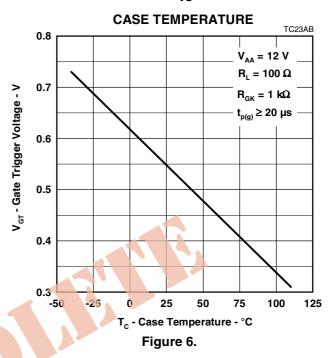
MAX ANODE POWER DISSIPATED vs

TRANSIENT THERMAL RESISTANCE vs CYCLES OF CURRENT DURATION

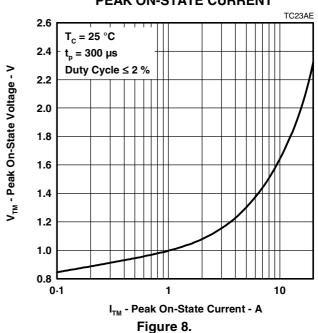
Figure 2.


TYPICAL CHARACTERISTICS

GATE TRIGGER CURRENT vs


CASE TEMPERATURE TC23AA 10 $V_{AA} = 12 V$ $R_1 = 100 \Omega$ _{G⊤} - Gate Trigger Current - mA $t_{p(q)} \ge 20 \mu s$ 0.1 -60 -20 40 60 80 100 120 -40 0 20 T_c - Case Temperature - °C

HOLDING CURRENT vs


Figure 5.

GATE TRIGGER VOLTAGE vs

PEAK ON-STATE VOLTAGE vs PEAK ON-STATE CURRENT

PRODUCT INFORMATION