
BOURNS

BDX33, BDX33A, BDX33B, BDX33C, BDX33D NPN SILICON POWER DARLINGTONS

- Designed for Complementary Use with BDX34, BDX34A, BDX34B, BDX34C and BDX34D
- 70 W at 25°C Case Temperature
- 10 A Continuous Collector Current
- Minimum h_{FE} of 750 at 3V, 3 A

Pin 2 is in electrical contact with the mounting base.

MDTRACA

absolute maximum ratings at 25°C case temperature (unless otherwise noted)

RATING	SYMBOL	VALUE	UNIT	
	BDX33		45	
Collector-base voltage (I _E = 0)	BDX33A		60	
	BDX33B	V _{СВО}	80	V
	BDX33C		100	
	BDX33D		120	
	BDX33		45	
Collector-emitter voltage (I _B = 0)	BDX33A	1	60	
	BDX33B	V _{CEO}	80	V
	BDX33C		100	
	BDX33D		120	
Emitter-base voltage		V _{EBO}	5	V
Continuous collector current		Ι _C	10	A
Continuous base current	I _B	0.3	А	
Continuous device dissipation at (or below) 25°C case temperature (see Note 1	P _{tot}	70	W	
Continuous device dissipation at (or below) 25°C free air temperature (see Note	P _{tot}	2	W	
Operating free air temperature range	Т _Ј	-65 to +150	°C	
Storage temperature range	T _{stg}	-65 to +150	°C	
Operating free-air temperature range	T _A	-65 to +150	°C	

NOTES: 1. Derate linearly to 150°C case temperature at the rate of 0.56 W/°C.

2. Derate linearly to 150°C free air temperature at the rate of 16 mW/°C.

BDX33, BDX33A, BDX33B, BDX33C, BDX33D NPN SILICON POWER DARLINGTONS

electrical characteristics at 25°C case temperature (unless otherwise noted)

	PARAMETER		TES.	T CONDITIONS		MIN	ТҮР	MAX	UNIT
					BDX33	45			
	Collector-emitter breakdown voltage		I _C = 100 mA I _B = 0		BDX33A	60			
V _{(BR)CEO}		I _C = 100 mA		(see Note 3)	BDX33B	80			V
(<i>)</i>					BDX33C	100			
					BDX33D	120			
		V _{CE} = 30 V	$I_B = 0$		BDX33			0.5	mA
		$V_{CE} = 30 V$	$I_B = 0$		BDX33A			0.5	
		$V_{CE} = 40 V$	$I_B = 0$		BDX33B			0.5	
		$V_{CE} = 50 V$	$I_B = 0$		BDX33C			0.5	
	Collector-emitter	$V_{CE} = 60 V$	$I_B = 0$		BDX33D			0.5	
I _{CEO}	cut-off current	$V_{CE} = 30 V$	$I_{B} = 0$	T _C = 100°C	BDX33			10	
		$V_{CE} = 30 V$	$I_{B} = 0$	T _C = 100°C	BDX33A			10	
		$V_{CE} = 40 V$	$I_B = 0$	T _C = 100°C	BDX33B			10	
		$V_{CE} = 50 V$	$I_B = 0$	T _C = 100°C	BDX33C			10	
		$V_{CE} = 60 V$	$I_B = 0$	T _C = 100°C	BDX33D			10	
		V _{CB} = 45 V	$I_E = 0$	-	BDX33			1	
	Collector cut-off current	$V_{CB} = 60 V$	$I_E = 0$		BDX33A			1	
		V _{CB} = 80 V	$I_E = 0$		BDX33B			1	mA
		V _{CB} = 100 V	$I_E = 0$		BDX33C			1	
		V _{CB} = 120 V	$I_E = 0$		BDX33D			1	
I _{CBO}		V _{CB} = 45 V	$I_E = 0$	T _C = 100°C	BDX33			5	
		$V_{CB} = 60 V$	$I_E = 0$	T _C = 100°C	BDX33A			5	
		V _{CB} = 80 V	$I_E = 0$	T _C = 100°C	BDX33B			5	
		V _{CB} = 100 V	$I_E = 0$	T _C = 100°C	BDX33C			5	
		V _{CB} = 120 V	I _E = 0	T _C = 100°C	BDX33D			5	
I	Emitter cut-off	V _{EB} = 5 V	$I_{\rm C} = 0$					10	mA
I _{EBO}	current	VEB - 5V	1 _C = 0					10	111/-
	Forward current transfer ratio	$V_{CE} = 3V$	$I_{\rm C} = 4$ A		BDX33	750			
		$V_{CE} = 3 V$	$I_{C} = 4 A$		BDX33A	750			
h _{FE}		V _{CE} = 3 V	I _C = 3 A	(see Notes 3 and 4)	BDX33B	750			
		V _{CE} = 3 V	I _C = 3 A		BDX33C	750			
		V _{CE} = 3 V	I _C = 3 A		BDX33D	750			
	Base-emitter voltage	V _{CE} = 3 V	$I_{C} = 4 A$		BDX33			2.5	
		V _{CE} = 3 V	$I_{C} = 4 A$		BDX33A			2.5	
V _{BE(on)}		V _{CE} = 3 V	I _C = 3 A	(see Notes 3 and 4)	BDX33B			2.5	V
		V _{CE} = 3 V	I _C = 3 A		BDX33C			2.5	
		V _{CE} = 3 V	$I_{\rm C} = 3 \text{ A}$		BDX33D			2.5	
V _{CE(sat)}	Collector-emitter saturation voltage	I _B = 8 mA	$I_{\rm C} = 4 \rm A$		BDX33			2.5	
		I _B = 8 mA	$I_{\rm C} = 4 \rm A$		BDX33A			2.5	
		I _B = 6 mA	$I_{\rm C} = 3 \text{ A}$	(see Notes 3 and 4)	BDX33B			2.5	V
		I _B = 6 mA	$I_{\rm C} = 3 \text{ A}$		BDX33C			2.5	
		I _B = 6 mA	$I_{\rm C} = 3 \text{ A}$		BDX33D			2.5	
V _{EC}	Parallel diode forward voltage	I _E = 8 A	I _B = 0					4	v

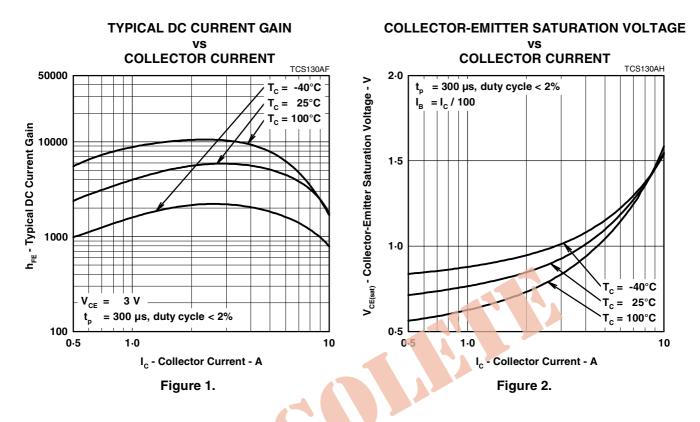
NOTES: 3. These parameters must be measured using pulse techniques, t_p = 300 $\mu s,$ duty cycle $\leq 2\%.$

4. These parameters must be measured using voltage-sensing contacts, separate from the current carrying contacts.

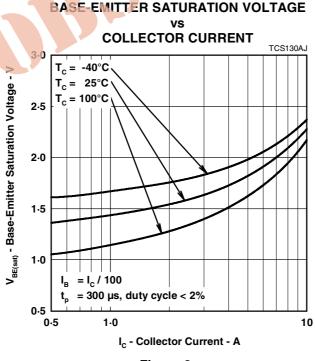
BDX33, BDX33A, BDX33B, BDX33C, BDX33D NPN SILICON POWER DARLINGTONS

Bourns®

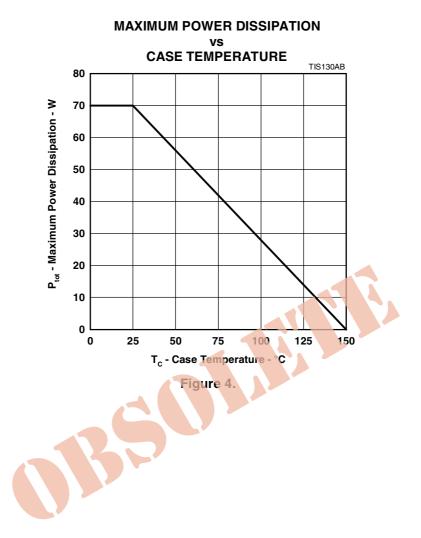
thermal characteristics


PARAMETER			ТҮР	MAX	UNIT
R_{\thetaJC}	Junction to case thermal resistance			1.78	°C/W
R _{θJA}	Junction to free air thermal resistance			62.5	°C/W

resistive-load-switching characteristics at 25°C case temperature


	PARAMETER	TEST CONDITIONS [†]			MIN	ТҮР	MAX	UNIT
t _{on}	Turn-on time	I _C = 3 A	I _{B(on)} = 12 mA	I _{B(off)} = -12 mA		1		μs
t _{off}	Turn-off time	$V_{BE(off)} = -3.5 V$	$R_L = 10 \ \Omega$	t_p = 20 μ s, dc \leq 2%		5		μs

[†] Voltage and current values shown are nominal; exact values vary slightly with transistor parameters.



TYPICAL CHARACTERISTICS

THERMAL INFORMATION

