
BD246, BD246A, BD246B, BD246C PNP SILICON POWER TRANSISTORS

BOURNS®

- Designed for Complementary Use with the BD245 Series
- 80 W at 25°C Case Temperature
- 10 A Continuous Collector Current
- 15 A Peak Collector Current
- Customer-Specified Selections Available

Pin 2 is in electrical contact with the mounting base.

absolute maximum ratings at 25°C case temperature (unless otherwise noted)

RATING	SYMBOL	VALUE	UNIT	
	BD246		-55	
Collector-emitter voltage ($R_{BE} = 100 \Omega$)	BD246A	V	-70	v
	BD246B	VCER	-90	v
	BD246C		-115	
	BD246		-45	
Collector-emitter voltage ($I_C = -30$ mA)	BD246A	V	-60	V
	BD246B	V _{CEO}	-80	
	BD246C		-100	
Emitter-base voltage		V _{EBO}	-5	V
Continuous collector current		۱ _C	-10	A
Peak collector current (see Note 1)		I _{CM}	-15	A
Continuous base current		I _B	-3	A
Continuous device dissipation at (or below) 25°C case temperature (see Note 2)	P _{tot}	80	W	
Continuous device dissipation at (or below) 25°C free air temperature (see Note	P _{tot}	3	W	
Unclamped inductive load energy (see Note 4)		½LI _C ²	62.5	mJ
Operating junction temperature range		Тj	-65 to +150	°C
Storage temperature range		T _{stg}	-65 to +150	°C
Lead temperature 3.2 mm from case for 10 seconds		TL	250	°C

NOTES: 1. This value applies for $t_p \leq 0.3$ ms, duty cycle $\leq 10\%.$

2. Derate linearly to 150°C case temperature at the rate of 0.64 W/°C.

3. Derate linearly to 150°C free air temperature at the rate of 24 mW/°C.

4. This rating is based on the capability of the transistor to operate safely in a circuit of: L = 20 mH, $I_{B(on)}$ = -0.4 A, R_{BE} = 100 Ω , $V_{BE(off)}$ = 0, R_S = 0.1 Ω , V_{CC} = -20 V.

PRODUCT INFORMATION

BD246, BD246A, BD246B, BD246C PNP SILICON POWER TRANSISTORS

electrical characteristics at 25°C case temperature

PARAMETER			TEST CONDITION	IS	MIN			UNIT
V _{(BR)CEO}	Collector-emitter breakdown voltage	I _C = -30 mA (see Note 5)	I _B = 0	BD246 BD246A BD246B	-45 -60 -80			V
I _{CES}	Collector-emitter cut-off current	$V_{CE} = -55 V$ $V_{CE} = -70 V$ $V_{CE} = -90 V$ $V_{CE} = -115 V$		BD246C BD246 BD246A BD246B BD246B BD246C	-100		-0.4 -0.4 -0.4 -0.4	mA
I _{CEO}	Collector cut-off current	$V_{CE} = -30 V$ $V_{CE} = -60 V$	I _B = 0 I _B = 0	BD246/246A BD246B/246C			-0.7 -0.7	mA
I _{EBO}	Emitter cut-off current	V _{EB} = -5 V	I _C = 0				-1	mA
h _{FE}	Forward current transfer ratio	$V_{CE} = -4 V$ $V_{CE} = -4 V$ $V_{CE} = -4 V$		(see Notes 5 and 6)	40 20 4			
V _{CE(sat)}	Collector-emitter saturation voltage	I _B = -0.3 A I _B = -2.5 A	0	(see Notes 5 and 6)			-1 -4	V
V _{BE}	Base-emitter voltage	$V_{CE} = -4 V$ $V_{CE} = -4 V$	I _C = -3 A I _C = -10 A	(see Notes 5 and 6)			-1.6 -3	V
h _{fe}	Small signal forward current transfer ratio	V _{CE} = -10 V	I _C = -0.5 A	f = 1 kHz	20			
h _{fe}	Small signal forward current transfer ratio	V _{CE} = -10 V	I _C = -0.5 A	f = 1 MHz	3			

NOTES: 5. These parameters must be measured using pulse techniques, $t_p = 300 \ \mu s$, duty cycle $\leq 2\%$.

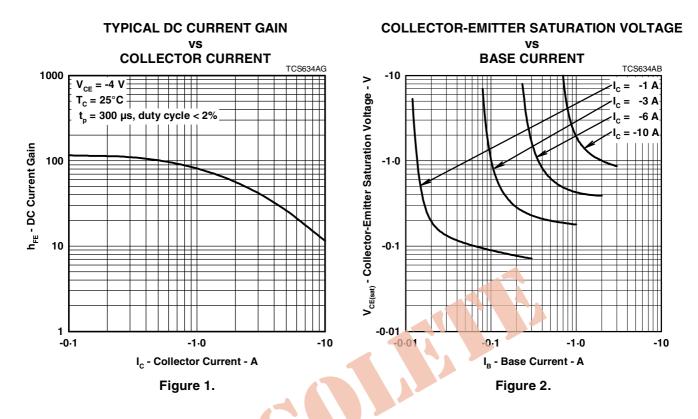
6. These parameters must be measured using voltage-sensing contacts separate from the current carrying contacts.

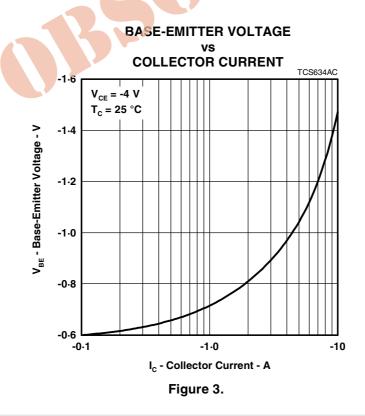
thermal characteristics

PARAMETER	MIN	ТҮР	MAX	UNIT
R _{0JC} Junction to case thermal resistance			1.56	°C/W
R _{eJA} Junction to free air thermal resistance			42	°C/W

resistive-load-switching characteristics at 25°C case temperature

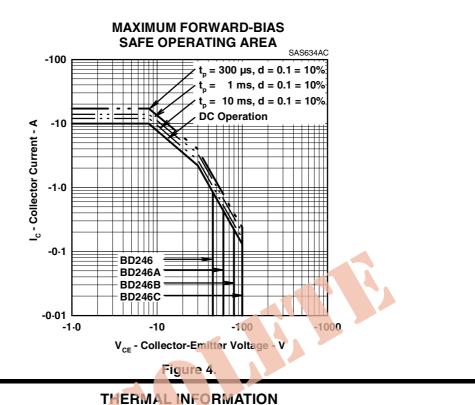
	PARAMETER	TEST CONDITIONS [†]			MIN	ТҮР	MAX	UNIT
t _{on}	Turn-on time	I _C = -1 A	I _{B(on)} = -0.1 A	$I_{B(off)} = 0.1 A$		0.2		μs
t _{off}	Turn-off time	$V_{BE(off)} = 3.7 V$	$R_L = 20 \Omega$	t_p = 20 µs, dc \leq 2%		0.8		μs


[†] Voltage and current values shown are nominal; exact values vary slightly with transistor parameters.



BD246, BD246A, BD246B, BD246C PNP SILICON POWER TRANSISTORS

TYPICAL CHARACTERISTICS



PRODUCT INFORMATION

JUNE 1973 - REVISED SEPTEMBER 2002 Specifications are subject to change without notice.

MAXIMUM SAFE OPERATING REGIONS

MAXIMUM POWER DISSIPATION VS **CASE TEMPERATURE** TIS633AA 100 \mathbf{P}_{tot} - Maximum Power Dissipation - W 80 60 40 20 0 0 25 50 75 100 150 125 T_c - Case Temperature - °C

