
BOURNS®

- Designed for Complementary Use with the BD246 Series
- 80 W at 25°C Case Temperature
- 10 A Continuous Collector Current
- 15 A Peak Collector Current
- Customer-Specified Selections Available

Pin 2 is in electrical contact with the mounting base.

MDTRAAA

absolute maximum ratings at 25°C case temperature (unless otherwise noted)

RATING	SYMBOL	VALUE	UNIT		
	BD245		55		
Collector-emitter voltage ($R_{BE} = 100 \Omega$)	BD245A		70	V	
	BD245B	CER	90		
	BD245C		115	i	
	BD245		45	٧	
Collector-emitter voltage (I _C = 30 mA)	BD245A	V _{CEO}	60		
	BD245B		80		
	BD245C		100		
Emitter-base voltage		V _{EBO}	5	V	
Continuous collector current		I _C	10	Α	
Peak collector current (see Note 1)		I _{CM}	15	Α	
Continuous base current	I _B	3	Α		
Continuous device dissipation at (or below) 25°C case temperature (see Note 2)	P_{tot}	80	W		
Continuous device dissipation at (or below) 25°C free air temperature (see Note	P _{tot}	3	W		
Unclamped inductive load energy (see Note 4)		½Ll _C ²	62.5	mJ	
Operating junction temperature range		Tj	-65 to +150	°C	
Storage temperature range		T _{stg}	-65 to +150	°C	
Lead temperature 3.2 mm from case for 10 seconds	T _L	250	°C		

NOTES: 1. This value applies for $t_p \le 0.3$ ms, duty cycle $\le 10\%$.

- 2. Derate linearly to 150°C case temperature at the rate of 0.64 W/°C.
- 3. Derate linearly to 150°C free air temperature at the rate of 24 mW/°C.
- 4. This rating is based on the capability of the transistor to operate safely in a circuit of: L = 20 mH, $I_{B(on)}$ = 0.4 A, R_{BE} = 100 Ω , $V_{BE(off)}$ = 0, R_S = 0.1 Ω , V_{CC} = 20 V.

electrical characteristics at 25°C case temperature

PARAMETER			TEST CONDITION	S	MIN	TYP	MAX	UNIT
V _{(BR)CEO}	Collector-emitter breakdown voltage			BD245 BD245A	45 60			V
		O breakdown voltage	breakdown voltage $I_C = 30 \text{ mA}$ $I_B = 0$ (see Note 5)	BD245B BD245C	80 100			V
		V _{CE} = 55 V	V _{BE} = 0	BD245	100		0.4	
	Collector-emitter	V _{CE} = 70 V	$V_{BE} = 0$	BD245A			0.4	mA
ICES	cut-off current	V _{CE} = 90 V	$V_{BE} = 0$	BD245B			0.4	
		V _{CE} = 115 V	$V_{BE} = 0$	BD245C			0.4	
I _{CEO}	Collector cut-off	V _{CE} = 30 V	$I_B = 0$	BD245/245A			0.7	mA
'CEO	current	V _{CE} = 60 V	$I_B = 0$	BD245B/245C			0.7	
I _{EBO}	Emitter cut-off current	V _{EB} = 5 V	I _C = 0				1	mA
	Forward current transfer ratio	Forward current $V_{CE} = 4 V$	I _C = 1 A	(see Notes F and C)	40			
h _{FE}		$V_{CE} = 4 V$ $V_{CE} = 4 V$	$I_C = 3 A$ $I_C = 10 A$	(see Notes 5 and 6)	20 4			
V _{CE(sat)}	Collector-emitter	I _B = 0.3 A	I _C = 3 A	(see Notes 5 and 6)			1	V
OE(Sai)	saturation voltage	I _B = 2.5 A	I _C = 10 A				4	
V _{BE}	Base-emitter	V _{CE} = 4 V	I _C = 3 A	(see Notes 5 and 6)	(see Notes 5 and 6)		1.6	V
DL	voltage	V _{CE} = 4 V	I _C = 10 A	,			3	
h _{fe}	Small signal forward current transfer ratio	V _{CE} = 10 V	I _C = 0.5 A	f = 1 kHz	20			
h _{fe}	Small signal forward current transfer ratio	V _{CE} = 10 V	I _C = 0.5 A	f = 1 MHz	3			

NOTES: 5. These parameters must be measured using pulse techniques, $t_p = 300$ µs, duty cycle $\leq 2\%$.

thermal characteristics

PARAMETER	MIN	TYP	MAX	UNIT
R _{eJC} Junction to case thermal resistance			1.56	°C/W
R _{eJA} Junction to free air thermal resistance			42	°C/W

resistive-load-switching characteristics at 25°C case temperature

	PARAMETER	TEST CONDITIONS †			MIN	TYP	MAX	UNIT
t _{on}	Turn-on time	I _C = 1 A	$I_{B(on)} = 0.1 A$	$I_{B(off)} = -0.1 A$		0.3		μs
t _{off}	Turn-off time	$V_{BE(off)} = -3.7 \text{ V}$	$R_1 = 20 \Omega$	$t_{\rm p} = 20 \ \mu s, \ dc \le 2\%$		1		μs

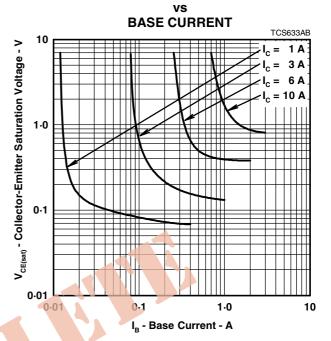
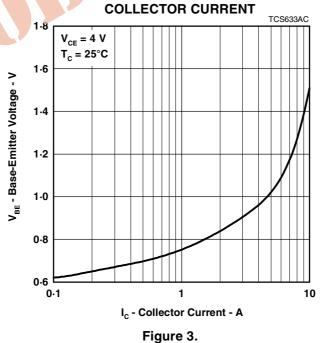
[†] Voltage and current values shown are nominal; exact values vary slightly with transistor parameters.

^{6.} These parameters must be measured using voltage-sensing contacts, separate from the current carrying contacts.

TYPICAL CHARACTERISTICS

TYPICAL DC CURRENT GAIN VS COLLECTOR CURRENT $T_{CS633AG}$ $T_{C} = 25^{\circ}C$ $T_{C} = 300 \ \mu s, \ duty \ cycle < 2\%$ 100 $T_{C} = 100 \ duty \ duty$

COLLECTOR-EMITTER SATURATION VOLTAGE

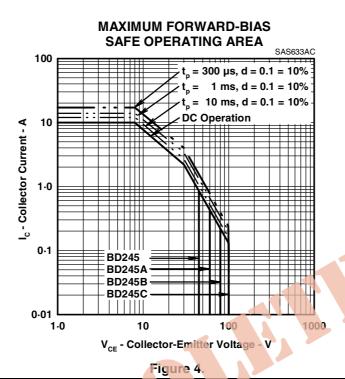

Figure 1.

Figure 2.

BASE-EMITTER VOLTAGE vs

MAXIMUM SAFE OPERATING REGIONS

THERMAL INFORMATION

MAXIMUM POWER DISSIPATION

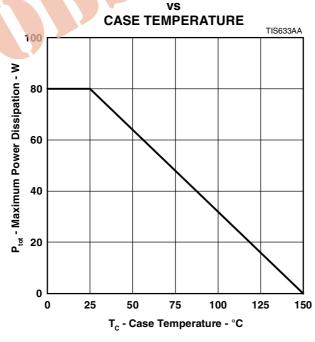


Figure 5.