

Application Note: 48V-BMS-AN01 – General Description

48V-BMS

AN01 – General Description

Table of Contents

1	General Description	3
1.1	Kit Content	3
2	Getting Started	3
3	Hardware Description	1
4	Configuration	5
4.1	Cell connection	5
4.2	Current path connection	5
5	Software	3
5.1	Main Tab	5
6	Board Schematics, Layout and BOM	9
7	Ordering & Contact Information	3
8	RoHS Compliant & ams Green Statement14	1
9	Copyrights & Disclaimer1	5

Revision History

Revision	Date	Owner	Description
1.0	06.10.2015	gheh	Initial release

1 General Description

This document describes the 48V BMS Board.

The 48V-BMS is a demonstrator solution for monitoring and safely operating a 48V battery stack such as the ones used in modern car supply nets and in many other mobility applications like ebikes and scooters.

The board incorporates:

- A cell supervision and balancing portion for up to 14 series connected cells
- Pack current and voltage monitoring via a copper shunt on the + terminal of the battery
- A N-mosFET disconnect switch on the + side of the battery
- A CAN communication interface for status messaging

The board is meant to be used in conjunction with the USB Interface Board and the 48V-PC GUI however you can connect the CAN Interface to any other CAN compatible device and evaluate the status messages there.

1.1 Kit Content

The kit consists of the dual layer PCB 48V-BMS and an eSATA Cable which is used to connect to the USB-Interface Board board.

Figure 1: 48V-BMS Board

2 Getting Started

To operate this Board you should at first download and install the 48V-BMS GUI from here:

http://ams.com/eng/Support/Demoboards/Power-Management/Battery-Stack-Monitor-Balancer/AS85xx-Ref-Design-48V

Once the software is installed you can connect the USB Interface Board to the 48V-BMS via the provided eSATA cable and afterwards connect the USB Interface Board to the PC via the USB cable.

3 Hardware Description

The 48V-BMS board is powered via the cell connector J3. A dc-dc converter steps down the input voltage to 5V which is used to power most of the circuitry. Current is routed through connectors A & B. They form a high current sensing path on the + side of the load circuit. Current is measured through the small voltage drop across the thin strip of copper on top of the AS8510 sensing chip. The copper resistance change is compensated in software. Balancing is done passively via two AS8506 chips using discharge resistors.

Figure 2: PCB Top Side Diagram

Table 1: Connection Diagram

La bel	Name	Design ator	Info
А	+Terminal		+ Connection to battery
В	+ Switched Terminal		+ Connection to load
С	Cell Connector	J3	Connection for cell measurement and balance
D	CAN	J1	Standard CAN Interface
E	JTAG/SWD	J2	Tag-connect Adapter for programming

amu

4 Configuration

4.1 Cell connection

GND CELL0 CELL2 CELL4	1 3 5 7 0	1 3 5 7	2468	$^{2}_{0}^{4}_{6}_{6}^{6}_{7}$	GND CELL1 CELL3 CELL5
CELL0 CELL2 CELL4 CELL6 MID CELL9 CELL11 CELL13 TOP	30 50 70 90 110 130 150 170 190 B	1 3 5 7 9 11 13 15 17 19 AT	4 8 10 12 14 16 18 20	04 08 010 012 014 016 018 020	CELL1 CELL3 CELL5 CELL7 CELL7 CELL8 CELL10 CELL12 CELL14 TOP

Figure 3: Battery Connector

Cells should be connected according to the pinout of the Battery plug. There are 3 GND (2xGND + Cell0) 2 Mid-Stack (Cell7 + MID) and 3 VPP (Cell14 + 2xTOP) connections respectively which shall be tied together directly at the battery.

4.2 Current path connection

The high current path runs through connectors A & B. The maximum current that the board can handle in this configuration is 100A. The trip current limit can be set via Software and is set to 60A by default.

5 Software

The Software Comprises of 4 different Tabs with different functionality which will be subsequently explained. When the software is started it will automatically connect to the USB Interface Board and start listening for incoming CAN Messages. A Green USB and CAN Signal in the bottom right Corner indicate a successful connection to the USB Board.

5.1 Main Tab

Figure 4: GUI Main Tab

This is the default window. It displays all measured battery parameters including cell voltages, pack voltage before and after the FET switch, temperature and total Current. It also display info messages like when the balancing is active or if any of the min/max parameters has been reached and the FET switch has been turned off for safety protection.

amu

Figure 5: GUI Graph Tab

The graph tab gives a graphical representation of the measured pack current & voltage and allows you to log these measurements to a file.

amu

BMS48V Evaluation Software		
File View Settings Help		
Register Map Readout Registers		amu
Registers Main Graph Calibrate		
Calibrate	Limits	
Voltage 48,000V	Max Voitage 58,800V	
Current 10,00A	Min Voltage 42,000V	
Temperature 22°C	Max Current 60,00A	
Calibrate	Send Limits	
	Max Cell Voltage 4,200V	
	Min Cell Voltage 3,300V	
	Send Cell Limits	
		USB CAN

Figure 6: GUI Calibrate Tab

The Calibrate tab allows calibration of the current and voltage measurement. It also allows you to set the pack as well as the cell voltage limits. These limits are stored in non-volatile memory on the 48V BMS Board.

To redo the calibration apply a known pack voltage and load current to the BMS Board. Type in these known values in the appropriate fields and click on the calibrate button. The Board will do a measurement and calculate the required calibration coefficients. These are immediately used and you can see the effect in the Main Tab.

6 Board Schematics, Layout and BOM

Figure 7: Schematics

Figure 8: Top/Bottom PCB Side

amu

	Bill of Mat	erials	48V BMS					
	Company:		ams AG					
	Originator:		aheh					
	PCB Name:		ARV BMS					
	PCB Version:		03					
	Report Date:		29.04.2015					
	report bate.		20.04.2010					
#	Designator	Comment	lame Error:Component	Manufacturer	Manufacturer Part Number	Supplier 1	Supplier Part Number 1	Quantity
1	CI	100nF		MULTICOMP	MC0603F104Z500CT	Farnel	1759123	1
2	C10	1uF		KEMET	C0805C105Z4VACTU	Farnel	9227806	1
3	C11	1uF		KEMET	C0805C105Z4VACTU	Farnel	9227806	1
4	C12	100nF		MULTICOMP	MC0503B104K160CT	Farnel	1759016	1
5	C13 C14	1000P		KEMET	00805C105Z4VACTU	Farnel	9227806	1
7	C15	1uF		KEMET	C0805C105Z4VACTU	Farnel	9227806	1
8	C16	100nF		KEMET	C0603C104K5RACTU	Farnel	1288255	1
9	C17	4.7uF		MURATA	GRM21BR71A475KA73L	Farnel	1845769	1
10	C18	100n- 4.7uF		MIRATA	GRMD1BR71A475KA73I	Famel	1288255	
12	C2	100nF		MULTICOMP	MC0603F104Z500CT	Farnel	1759123	1
13	C3	4u7 6V		JOHANSON DIELECTRICS	6R3R15X475KV4E	Farnel	1886096RL	1
14	64	1uF 100V		MULTICOMP	MC1206B105K101CT	Farnel	2320876	1
15	05	100F		KEMET MULTICOMP	C1206C106Z8VACTU MC06038104K160CT	Farnel	9227903	1
17	C8	100nF		MULTICOMP	MC0603B104K160CT	Farnel	1759016	
18	C9	220nF		TDK	C1608X7R1H224K080AB	Farnel	2346906	1
19	D1	LED_0805		MULTICOMP	OV8-0803	Farnel	1716765	1
20	D10	BZT52C		DIODES INC.	BZT52C5V6T-7	Farnel	2077937	1
21	011	821520		DIODES INC.	BZ15205V61-7 BZT5205V61-7	Farnel	2077937	1
22	D13	BZT52C		DIODES INC.	BZT52CSV6T-7	Famel	2077937	1
24	D14	BZT52C		DIODES INC.	BZT52C5V6T-7	Farnel	2077937	1
25	D15	BZT52C		DIODES INC.	BZT52C5V6T-7	Farnel	2077937	1
26	D16	BZT52C		DIODES INC.	BZT52C5V6T-7	Farnel	2077937	1
27	D2 D3	BZT52C		NULTICOMP DIODES INC.	0V3-0803 BZT5205V6T-7	Farnel	2077937	1
29	D4	BZT52C		DIODES INC.	BZT52CSV6T-7	Farnel	2077937	1
30	D5	BZT52C		DIODES INC.	BZT52C5V6T-7	Farnel	2077937	1
31	D6	BZT52C		DIODES INC.	BZT52C5V6T-7	Farnel	2077937	1
32	07	BZT52C		DIODES INC.	BZT52C5V6T-7	Farnel	2077937	1
33	D9	BZ152C BZT52C		DIODES INC.	BZ152C5V61-7 BZT52C5V6T-7	Farnel	2077937	1
35	J3	BAT		AMPHENOL	T821120A18100CEU	Farnel	2215309	1
36	RI	120R		YAGEO (PHYCOMP)	RC0603FR-07120RL	Farnel	9238379	1
37	R10	6KB		MULTICOMP	MCMRD6X68D1FTL	Farnel	2073558	1
38	R11	10K		MULTICOMP	MCMRD5X1002FTL	Farnel	2073349	1
40	R12	10K		MULTICOMP	MCMR05X1002FTL	Famel	2073349	1
41	R14	6KB		MULTICOMP	MCMRD6X6801FTL	Farnel	2073558	1
42	R15	10K		MULTICOMP	MCMRD6X1002FTL	Farnel	2073349	1
43	R16	20R		MULTICOMP	MCMR12X200 JTL	Farnel	2073903	1
44	817	470R		MULTICOMP	MONR12X20031E	Famel	9332446	
46	R3	470R		MULTICOMP	MC0063W06035470R	Farnel	9332146	1
47	R4	10K		MULTICOMP	MCMRD6X151 JTL	Farnel	2073394	1
48	RS	6KB		MULTICOMP	MCMRD6X6801FTL	Farnel	2073558	1
49	87	TUK EKR		MULTICOMP MULTICOMP	MCMR05X1002FTL MCMR05X5801ETI	Famel	2073549	1
51	RS	10K		MULTICOMP	MCMR06X1002FTL	Farnel	2073349	1
52	R9	10K		MULTICOMP	MCMR06X6801FTL	Farnel	2073558	1
53	81	SHUNT_LT				not populated		1
54	UI	CAN-TRC		ON SEMICONDUCTOR	NCV7342D10R2G	Farnel	2382435	1
55	010	A38506				ams	A38506C	1
57	U2	MB9B524K				AMS		1
58	U6	LT1910		LINEAR TECHNOLOGY	LT1910ES8#PBF	Farnel	1273493	1
59	X1	CXO_7C_4MHz		TXC	7C-4.000MBA-T	Farnel	1842040	1
60	09	AS1360 ASKG				ams	A81360-33-T	1
62	U3	LTC3639		Linear Technology	LTC3639EM3E#PBF	Digi-Key	LTC3639EM3E#P8F-ND	1
63	U4	A38801				ams		1
64	U7	A88525_new				ams		1
65	JI	esata		Molex Inc	0473790100	Farnel	1428280	1
66	Q1			INTERNATIONAL RECTIFIER	AURF83005-7P	Farnel	2148059	1
67	03	888123		NXP	B32123	Farnel	1510764	1
69	C7	10uF		PANASONIC	EEEFK1J100P	Farnel	9696008	1
70	US	74HCT125		NXP	74HCT125D	Farnel	1201306	1
71	L1	100uH		MULTICOMP	MC8D54-101KU	Farnel	1864128	1
72	az oved	TG2050-JTAG	Notor	L	l	nos populated		72
-ψpi	oved		140(62		ļ		-	12

Figure 9: BOM

7 Ordering & Contact Information

SAP number	Ordering Code	Description
#990600868	REFERENCE DESIGN 48V	48V BMS Board

Buy our products or get free samples online at:

www.ams.com/ICdirect

Technical Support is available at:

www.ams.com/Technical-Support

For further information and requests, e-mail us at:

ams_sales@ams.com

For sales offices, distributors and representatives, please visit:

www.ams.com/contact

Headquarters

ams AG Tobelbaderstrasse 30 8141 Unterpremstaetten Austria, Europe

Tel: +43 (0) 3136 500 0 Website: <u>www.ams.com</u>

8 RoHS Compliant & ams Green Statement

RoHS

The term RoHS compliant means that ams products fully comply with current RoHS directives. Our semiconductor products do not contain any chemicals for all 6 substance categories, including the requirement that lead not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, RoHS compliant products are suitable for use in specified lead-free processes.

ams Green (RoHS compliant and no Sb/Br)

ams Green defines that additionally to RoHS compliance, our products are free of Bromine (Br) and Antimony (Sb) based flame retardants (Br or Sb do not exceed 0.1% by weight in homogeneous material).

Important Information

The information provided in this statement represents ams knowledge and belief as of the date that it is provided. ams bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. ams has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. ams and ams suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.

9 Copyrights & Disclaimer

Copyright ams AG, Tobelbader Strasse 30, 8141 Unterpremstaetten, Austria-Europe. Trademarks Registered. All rights reserved. The material herein may not be reproduced, adapted, merged, translated, stored, or used without the prior written consent of the copyright owner.

Devices sold by ams AG are covered by the warranty and patent indemnification provisions appearing in its Term of Sale. ams AG makes no warranty, express, statutory, implied, or by description regarding the information set forth herein. ams AG reserves the right to change specifications and prices at any time and without notice. Therefore, prior to designing this product into a system, it is necessary to check with ams AG for current information. This product is intended for use in commercial applications. Applications requiring extended temperature range, unusual environmental requirements, or high reliability applications, such as military, medical life-support or life-sustaining equipment are specifically not recommended without additional processing by ams AG for each application. This Product is provided by ams "AS IS" and any express or implied warranties, including, but not limited to the implied warranties of merchantability and fitness for a particular purpose are disclaimed.

ams AG shall not be liable to recipient or any third party for any damages, including but not limited to personal injury, property damage, loss of profits, loss of use, interruption of business or indirect, special, incidental or consequential damages, of any kind, in connection with or arising out of the furnishing, performance or use of the technical data herein. No obligation or liability to recipient or any third party shall arise or flow out of ams AG rendering of technical or other services.