

Amphenol Motion Grade™ M23 and M40 Circular DIN Connectors & Cables

MotionGrade™ M23 Connectors are designed to excel in performance and reliability in our customers' most demanding environments. Our innovations and experience as an industry leader in connector technology and total interconnect solutions allow us to offer such additional features as our FlexGrip™ Backshell System and RockSolid™ Contacts. These features combined with a simplistic design approach reduce initial procurement and assembly cost, while ensuring compatibility to all other existing standard layouts. Amphenol's MotionGrade™ M23 products are ideally suited for advanced servo drive encoder feedback applications, packaging, robotic, printing, machine tool, medical and automation environments where control signal transmission or power are required in a robust and compact delivery system.

GENERAL SPECIFICATIONS

Technical Data for Standard Signal **Circular Connectors**

Operatina Temperature Degree of Protection

A Series

12, 16 and 17 Position 1.0mm Contacts Only

B Series

6, 8 and 9 Position 1.0mm Contacts

C Series 6 and 8 Position

2.0mm Contacts 2.0mm Contacts 3.6mm Contacts

Amphenol

-20 °C to +130°C IP66/67 (plugged)

Intercontec -20 °C to +130°C IP66/67 (plugged)

Amphenol -20 °C to +130°C IP66/67 (plugged)

Intercontec -20 °C to +130°C IP66/67 (plugged)

Amphenol -20 °C to +130°C IP66/67 (plugged)

Intercontec -20 °C to +130°C IP66/67 (plugged)

Electrical Data - Contacts

	Liecincal baid - confacts						
Maximum Current (max. wire guage)	max. 9A	max. 9A	1.0mm: max. 9A	^{1.0mm:} max. 9A	2.0mm: max. 28A (6 contacts) max. 30A (8-/9 contacts)	2.0mm: max. 28A (6 contacts) max. 30A (8-/9 contacts)	
	IIIda. 7A		2.0mm: max. 28A (6 contacts) max. 30A (8-/9 contacts)	2.0mm: max. 28A (6 contacts) max. 30A (8-/9 contacts)	^{3.6mm:} max. 75A	^{3.6mm:} max. 75A	
Maximum Voltage	1057/ (AC/DC)	125V (AC/DC)	1.0mm: 125V (AC/DC)	1.0mm: 125V (AC/DC)	Both: 630V (AC/DC)	Both: 630V (AC/DC)	
	125V (AC/DC)		2.0mm: 630V (AC/DC)	2.0mm: 630V (AC/DC)			
Test Voltage (between contacts)	2500V	2500V	1.0mm: 2500V	1.0mm: 2500V	Both: 6000V	Both: 6000V	
	2500 V	25004	2.0mm: 6000V	2.0mm: 6000V			
Contact Resistance	<5mΩ			Both:	Both:	2.0mm: <5m Ω	2.0mm: <5mΩ
	>5MLZ	<5mΩ	<5mΩ	<5mΩ	3.6mm: <1mΩ	3.6mm: <1mΩ	
Mating Cycles	>50	>50	Both: >50	Both: >50	Both: >50	Both: >50	

Data According to VDE 0110/EN61984, Part 6.19.2.2

Pollution Degree	3	3	3	3	3	3
Overvoltage Category	III	III	III	III	III	Ш
Max. Operating Height		_			2000m	2000m

Materials

Marchais						
Housing	Zinc Die Cast	Zinc Die Cast/Brass (Stainless Steel Option)	Zinc Die Cast	Zinc Die Cast/Brass (Stainless Steel Option)	Zinc Die Cast	Magnesium Die Cast/ Aluminum
Connecting Nut (some designs)	Brass, Nickel-plated	Brass, Nickel-plated	Brass, Nickel-plated	Brass, Nickel-plated	Brass, Nickel-plated	Brass, Nickel-plated

FEATURES AND BENEFITS

Lowest Installed Cost

By providing enhanced performance and advancements to existing standard systems with improvements such as our FlexGripTM design, these cost conscious innovations will increase the reliability & performance of one of the most dependable interconnect offerings available

Superior Shielding

First quality components coupled with a simplistic design provide maximum EMI/RFI shielding capabilities while reducing assembly preparation times.

Assembly/ Disassembly Overall design construction allows for one step process of contact extraction versus complete connector disassembly found within other brands. An integrated contact locking system ensures ease of use and definitive contact integrity upon insertion.

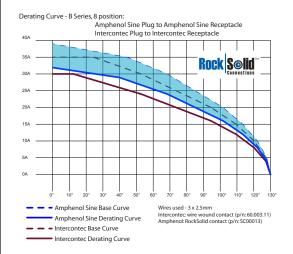
Cable Strain Relief Fluid Resistance Your choice of either the innovative design features of FlexGripTM or traditional cable strain relieving similar to existing standard systems.

and Sealing

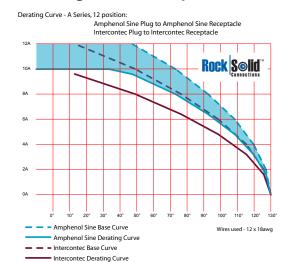
In combination with our strain relief systems, Amphenol utilizes advanced sealing technologies & materials to ensure highest reliability when subjected to the harshest environments.

By creating a 360° mating surface around the pin, Amphenol's RockSolia[™] contact offering ensures longer contact life, lower contact resistance, immunizes against shock and vibration all while maintaining low insertion and extraction forces. Additionally, industry standard contacts are also available made with gold plated surfaces and high quality Copper alloys.

RoHS Compliant

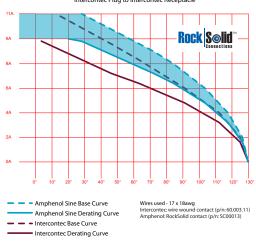

All materials meet the requirements of the European Directive 2002/95/EC, Issue 13.2.2003.

Add'l Approvals


c us ISO 9001/2000

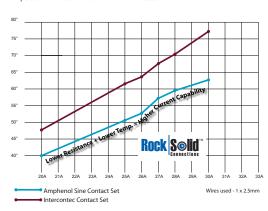
PERFORMANCE ANALYSIS

Derating Curves - 8 pos.

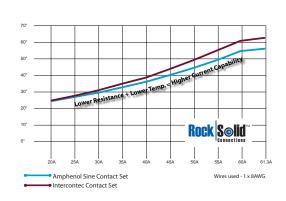


Derating Curves - 12 pos.

Derating Curves - 17 pos.

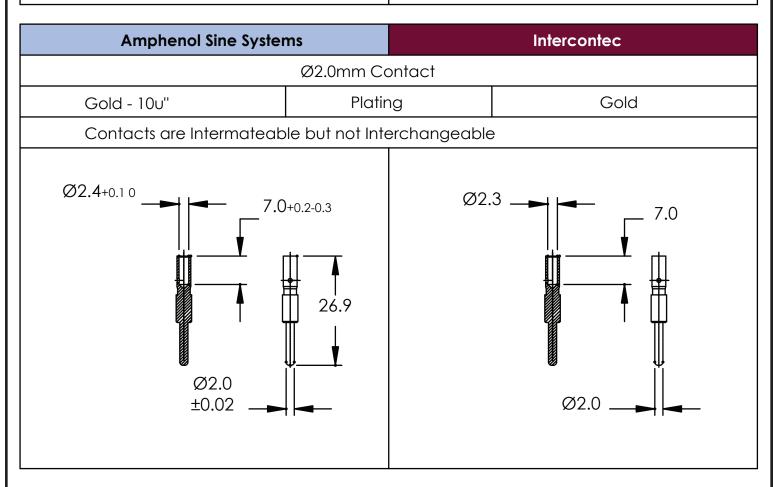


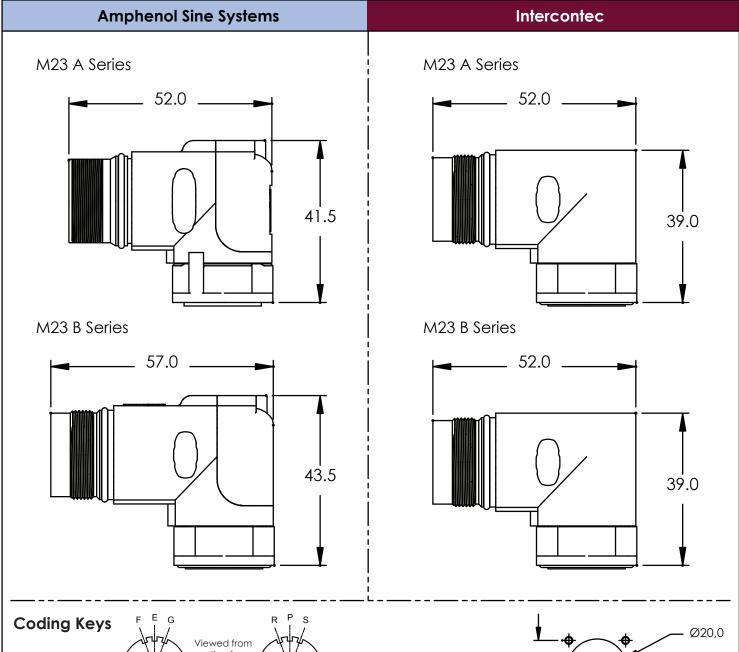


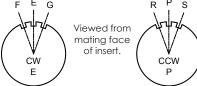


Temperature Variance

Temperature Variance of M23 2mm Power Contacts






M23 TECHNICAL SPECIFICATIONS

Amphenol Sine System	ns		Intercontec
	Ø1.0mm Cd	ontact	
Gold - 10u"	Platir	ng	Gold
Contacts are Intermateab	le but not Inte	erchangeable	
22.4 4.3	0.1+0.05		Ø1.4 5.5 7.8 Ø1.0

M23 TECHNICAL SPECIFICATIONS

ALL M23 A SERIES INSERTS COME WITH 3 CODING KEYS.

To order the connector with the correct insert coding, change the 6th digit in the catalog part number per the coding letter desired (see figure above).

Examples: MA1CAE1200 for "E" coding, MA1CAF1200 for "F" coding, MA1CAG1200 for "G" coding, MA1CAP1200 for "P" coding, MA1CAR1200 for "R" coding, MA1CAS1200 for "S" coding

If you are ordering an "E" type connector, coding options are only: E, F & G. Normal coding is identified as "E".

If you are odering a "P" type connector, coding options are only: P, R & S. Normal coding is identified as "P".

Ø20,0 19.8 + M2,5

MOUNTING HOLE PATTERN:

SAME FOR M23 A & B SERIES, AMPHENOL SINE SYSTEMS & INTERCONTEC

M23 TECHNICAL SPECIFICATIONS

Connector Temperature Rise test Results

TEST 1 12 pin - Sine Plug to Sine Recp

	Tempero		
Current (A)	Connector (tb)	Ambient (tu)	tb-tu
0	0	0	0
2	25.9	23.1	2.8
4	35	24.8	10.2
6	48.7	27.3	21.4
8	68.2	30.9	37.3
10	92.5	35.8	56.7
12	124.9	42.3	82.6

TEST 3 17 pin - Sine Plug to Sine Recp

	Tempero		
Current (A)	Connector (tb)	Ambient (tu)	tb-tu
0	0	0	0
2	27.1	23.5	3.6
4	37.7	25.3	12.4
6	55	28.6	26.4
8	78.8	33.1	45.7
9	93.8	36.1	57.7

TEST 10 9 pin - Sine Plug to Sine Recp

	Temper		
Current (A)	Connector (tb)	Ambient (tu)	tb-tu
0	25	23.1	1.9
5	24.9	22.8	2.1
10	31	23.7	7.3
15	41	25.4	15.6
20	55.5	28.3	27.2
30	96.5	35.7	60.8
35	125.2	41.4	83.8

1531 14	12 pin - intercontec riug to intercontec kecp

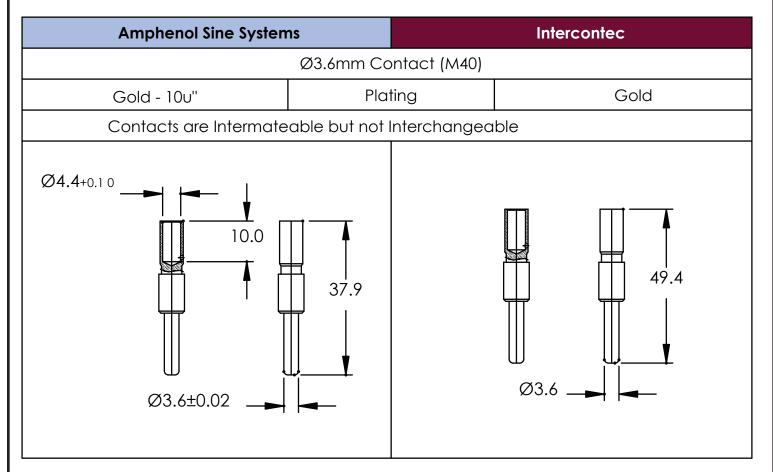
	Temper		
Current (A)	Connector (tb)	Ambient (tu)	tb-tu
0	0	0	0
2	26.9	22.7	4.2
4	38.3	23.7	14.6
6	58.3	26.9	31.4
8	84.9	31.3	53.6
10	117.3	36.3	81
12	161.8	44.7	117.1

TEST 15 17 pin - InterContec Plug to InterContec Recp

	Temper		
Current (A)	Connector (tb)	Ambient (tu)	tb-tu
0	0	0	0
2	28.2	23.2	5
4	42.8	25	17.8
6	68.5	29.6	38.9
8	103	36	67
9	123.6	39.9	83.7

TEST 13 9 pin - InterContec Plug to InterContec Recp

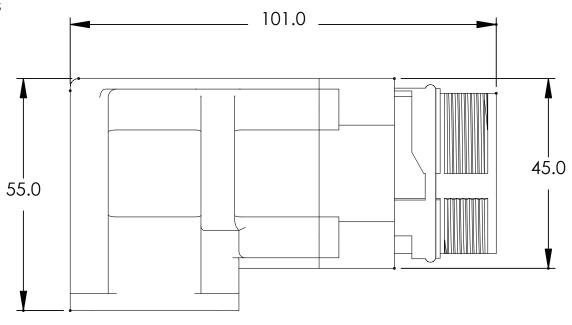
1201 10				
	Temper	Temperature		
Current (A)	Connector (tb)	Ambient (tu)	tb-tu	
0	21.6	21.6	0	
5	24	22.3	1.7	
10	31	23.4	7.6	
15	44.1	25.1	19	
20	59.1	26.8	32.3	
30	103.5	33.7	69.8	
35	131.6	38.5	93.1	


Operating Temperature
Degree Of Protection
Maximum Voltage
Maximum Current
Contact Resistance
Mating Cycles
Pollution Degree

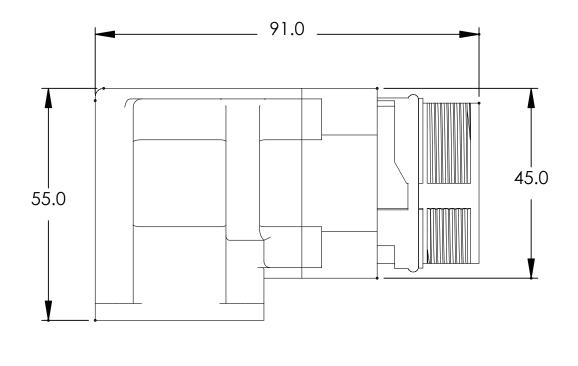
Amphenol and Intercontec

are Equivalent.

M40 TECHNICAL SPECIFICATIONS


Amphenol Sine System	าร		Intercontec
	Ø2.0mm Cc	ntact (M40)	
Gold - 10u"	Pla	ting	Gold
Contacts are Intermate	able but not l	nterchangea	ble
Ø2.4+0.1 0 31.7 7.5 Ø2.0±0.02		39. <u>\</u>	5 Ø2.0

M40 TECHNICAL SPECIFICATIONS

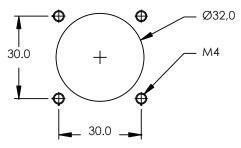

Amphenol Sine Systems

M40 C Series

Intercontec

M40 C Series

M40 TECHNICAL SPECIFICATIONS


Contact (Ø3.6mm) Temperature Rise Test Results

Ø3.6mm M40 Contact with 8AWG Wire	Ambient °C	3.6mm Contact Current
Sample 1 Test 1	22.9	20A
	22.9	25A
	22.9	30A
	22.9	35A
	22.9	40A
	22.9	45A
	22.9	50A
	22.9	55A
	22.9	60A
	22.9	61.3A

Amphenol Sine Systems			
Sine °C	C-UL Max Temp Target	Pass/ Fail ?	
25.9	52.9	Pass	
28.1	52.9	Pass	
30.5	52.9	Pass	
33.6	52.9	Pass	
37	52.9	Pass	
40.5	52.9	Pass	
44.8	52.9	Pass	
49.1	52.9	Pass	
54.3	52.9	Fail	
55.6	52.9	Fail	

Intercontec		
Intercontec °C	C-UL Max Temp Target	Pass/ Fail ?
26.3	52.9	Pass
29	52.9	Pass
32.1	52.9	Pass
35.7	52.9	Pass
39.4	52.9	Pass
44.2	52.9	Pass
49.4	52.9	Pass
54.6	52.9	Fail
60.2	52.9	Fail
62	52.9	Fail

Difference
0.4
0.9
1.6
2.1
2.4
3.7
4.6
5.5
5.9
6.4

MOUNTING HOLE PATTERN:

SAME FOR M40 C SERIES, AMPHENOL SINE SYSTEMS & INTERCONTEC

3RD PARTY PRODUCT TESTING

Shock Test #1

This test is conducted for the purpose of determining the suitability of connectors and connector assemblies when subjected to shocks such as those that may be expected as a result of rough handling, transportation and operational conditions., This test differs from other shock tests in that the design of the shock machine is not specified, but the half-sine and sawtooth shock pulse waveforms are specified with tolerances. The frequency response of the measuring systems is also specified with tolerances.

8 pos. Plug (MB1CKN0800), RockSolid™ Contacts (SC000013, 14) and FlexGrip™ Strain Relief (MB4FSR-B10.3)

Test Requirement:

Standard: GJB1217-2004 (China) / EIA-364-27B Condition A (USA)

Test Method A: Shock

Sample condition: Connectors in normal conditions before testing.

Pulse Shape: Half Sine Peak Acceleration: 49g Pulse Duration:

Shock Direction: \pm X, \pm Y and \pm Z axis

Number of Shocks: 3X in each direction, (18 times total)

Test Result: No intermittent disconnection occurred during the test.

Test Conclusion: Pass

Shock Test #2

This test is conducted for the purpose of determining the suitability of connectors and connector assemblies when subjected to shocks such as those that may be expected as a result of rough handling, transportation and operational conditions., This test differs from other shock tests in that the design of the shock machine is not specified, but the half-sine and sawtooth shock pulse waveforms are specified with tolerances. The frequency response of the measuring systems is also specified with tolerances.

Products Tested:

12 pos. Mated Set (Plug: MA1CAE1200 w/ RockSolid™ Contacts and Recpt: MA1RAE1200); 17 pos. Mated Set (Plug: MA1CAE1700 w/ RockSolid™ Contacts and Recpt: MA1RAE1700); 8 pos. Mated Set (Plug: MB1CKN0800 w/ RockSolid™ Contacts and Recpt: MB1RJN0800)

12 pos. Mated Set (Plug: ASTA021FR01610035000 and Recpt: EGA052MR04000012000); 17 pos. Mated Set (Plug: ASTA035FR01610035000 and Recpt: EGA113MR04000012000); 8 pos. Mated Set (Plug: BSTA078FR05580047000 and Recpt: BEDC089MR13000005000)

Test Requirement:

According to the standard: MIL-STD202G, Test Condition A/IEC 60068-2-28 Eb

Test Condition: Shock

Half sine Pulse Shape: 50g Acceleration: Pulse Duration: 11ms

Shock Direction: $\pm X$, $\pm Y$ and $\pm Z$ axis

Number of Shocks: 3X in each direction, (18 times total)

Test Result: No discontinuity > 1µ sec. No locking or unmating

No loose parts.

Test Conclusion: Pass

Sinusoidal Vibration Test #1

This standard test procedure details a method to assess the ability of electrical connector components to withstand specified severities of vibration. The object of this test is to determine the effects of vibration within the predominant or random vibration frequency ranges and magnitudes that may be encountered during the life of the connector.

Products Tested:

12 pos. Plug (MA1CAE1200), RockSolid™ Contacts (SC000013) and FlexGrip™ Strain Relief (MAFSR-A12.8)

Test Requirement and Acceptance Criteria:

Standard: GJB1217-2005 (China) / EIA-364-28D Method IV (USA)

Test Method IV: Vibration

Sample condition: Connectors in normal conditions before testing. (Ambient Temp: 23°C to 24°C; Relative Humidity: 53% to 62%)

(10~55~2000) Hz Sweep Frequency: Amplitude: 1.5mm at (10~55) Hz 19.6g at (55~2000) Hz Acceleration: Vibration Axis: X, Y AND Z axis Test Time: 4 hour / axis Sweep Rate: 1 oct/min

Test Result: No intermittent disconnection occurred during the test.

Test Conclusion: Pass

Sinusoidal Vibration Test #2

This standard test procedure details a method to assess the ability of electrical connector components towithstand specified severities of vibration. The object of this test is to determine the effects of vibration within the predominant or random vibration frequency ranges and magnitudes that may be encountered during the life of the connector.

Products Tested:

12 pos. Mated Set (Plug: MA1CAE1200 w/ RockSolid™ Contacts and Recept: MA1RAE1200) 17 pos. Mated Set (Plug: MA1CAE1700 w/ RockSolid™ Contacts and Recept: MA1RAE1700) 8 pos. Mated Set (Plug: MB1CKN0800 w/ RockSolid™ Contacts and Recept: MB1RJN0800)

12 pos. Mated Set (Plug: ASTA021FR01610035000 and Recept: AEGA052MR04000012000) 17 pos. Mated Set (Plug: ASTA035FR01610035000 and Recept: AEGA113MR04000012000) 8 pos. Mated Set (Plug: BSTA078FR05580047000 and Recept: BEDC089MR1300005000)

Test Requirement and Acceptance Criteria: Standard: IEC 60068-2-6 Fc

Test Condition: Vibration, Endurance (sine) Frequency: (10~2000~10) Hz Double Amplitude: 0.060 in. Acceleration: 20g

Linearly Sweep: 12 sweeps @ 20 min. (4 hours per axis)

Vibration Axis: X. Y AND Z axis Test Result: No discontinuity > 1µ sec.

Test Conclusion: Pass

Kate Wilton, Program Development Manager

Direct: 1.863.676.9416, Ext. 420 / Toll Free: 1.800.394.7732 Ext. 8668 kate@sineco.com