

8-Bit Serial-Input DMOS Power Driver

Last Time Buy

This part is in production but has been determined to be LAST TIME BUY. This classification indicates that the product is obsolete and notice has been given. Sale of this device is currently restricted to existing customer applications. The device should not be purchased for new design applications because of obsolescence in the near future. Samples are no longer available.

Date of status change: May 3, 2010

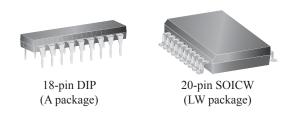
Deadline for receipt of LAST TIME BUY orders: October 29, 2010

Recommended Substitutions:

For existing customer transition, and for new customers or new applications, contact Allegro Sales.

NOTE: For detailed information on purchasing options, contact your local Allegro field applications engineer or sales representative.

Allegro MicroSystems, Inc. reserves the right to make, from time to time, revisions to the anticipated product life cycle plan for a product to accommodate changes in production capabilities, alternative product availabilities, or market demand. The information included herein is believed to be accurate and reliable. However, Allegro MicroSystems, Inc. assumes no responsibility for its use; nor for any infringements of patents or other rights of third parties which may result from its use.



8-Bit Serial-Input DMOS Power Driver

Features and Benefits

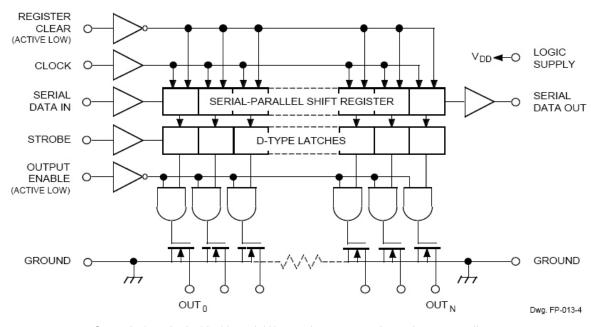
- 50 V minimum output clamp voltage
- 150 mA output current (all outputs simultaneously)
- 5 Ω typical $r_{DS(on)}$
- Low power consumption
- Replacement for TPIC6B595N and TPIC6B595DW

Packages:

Not to scale

Description

The A6B595 combines an 8-bit CMOS shift register and accompanying data latches, control circuitry, and DMOS power driver outputs. Power driver applications include relays, solenoids, and other medium-current or high-voltage peripheral power loads.


The serial-data input, CMOS shift register and latches allow direct interfacing with microprocessor-based systems. Serial-data input rates are over 5 MHz. Use with TTL may require appropriate pull-up resistors to ensure an input logic high.

A CMOS serial-data output enables cascade connections in applications requiring additional drive lines. Similar devices with reduced $r_{DS(on)}$ are available as the A6595.

The A6B595 DMOS open-drain outputs are capable of sinking up to 500 mA. All of the output drivers are disabled (the DMOS sink drivers turned off) by the OUTPUT ENABLE input high. Copper lead frames, reduced supply current requirements, and low on-state resistance allow both devices to sink 150 mA from all outputs continuously, to ambient temperatures over 85°C.

The A6B595 is furnished in a 20-pin dual in-line plastic package and a 20-pin wide-body, small-outline plastic package (SOICW) with gull-wing leads. The Pb (lead) free versions (suffix -T) have 100% matte tin leadframe plating.

Functional Block Diagram

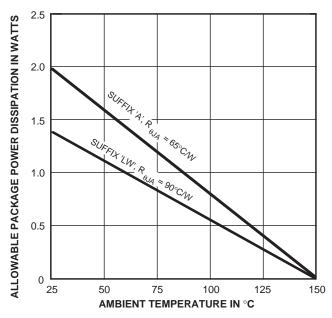
Grounds (terminals 10, 11, and 19) must be connected together externally.

8-Bit Serial-Input DMOS Power Driver

Selection Guide

Part Number	Package	Packing
A6B595KA-T	18-pin DIP	18 pieces per tube
A6B595KLWTR-T	20-pin SOICW	1000 pieces per reel

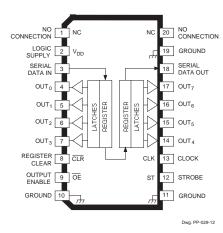
Absolute Maximum Ratings


Characteristic	Symbol	Symbol Notes		Units
Logic Supply Voltage	V _{DD}		7	V
Output Voltage	Vo		50	V
Input Voltage Range	Vı		-0.3 to 7.0	V
Outrast Danie Outrant	Io	Continuous; each output, all outputs on	150	mA
Output Drain Current	I _{OM}	Peak; pulse duration 100 µs, duty cycle 2%	500	mA
Single-Pulse Avalanche Energy	E _{AS}		30	mJ
Operating Ambient Temperature	T _A	Range K	-40 to 85	°C
Maximum Junction Temperature	T _J (max)		150	°C
Storage Temperature	T _{stg}		-65 to 150	°C

Caution: These CMOS devices have input static protection (Class 3) but are still susceptible to damage if exposed to extremely high static electrical charges.

Thermal Characteristics

Characteristic	Symbol	Test Conditions*	Value	Units
Package Thermal Resistance		Package A, 1-layer PCB with copper limited to solder pads	65	°C/W
rackage memai kesisiance	$R_{ heta JA}$	Package LW, 1-layer PCB with copper limited to solder pads	90	°C/W

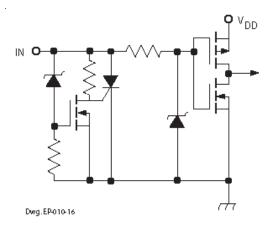

^{*}Additional thermal information available on the Allegro website

Dwg. GS-004A

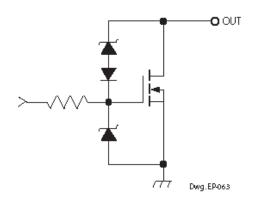
PIN-OUT DIAGRAM

Note that the A package (DIP) and the LW package (SOIC) are electrically identical and share a common terminal number assignment.

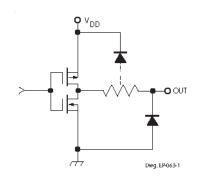
TERMINAL DESCRIPTIONS


Terminal No.	Terminal Name	Function
1	NC	No internal connection.
2	LOGIC SUPPLY	(V _{DD}) The logic supply voltage (typically 5 V).
3	SERIAL DATA IN	Serial-data input to the shift-register.
4-7	OUT ₀₋₃	Current-sinking, open-drain DMOS output terminals.
8	CLEAR	When (active) low, the registers are cleared (set low).
9	OUTPUT ENABLE	When (active) low, the output drivers are enabled; when high, all output drivers are turned OFF (blanked).
10	GROUND	Reference terminal for output voltage measurements (OUT ₀₋₃).
11	GROUND	Reference terminal for output voltage measurements (OUT ₀₋₇).
12	STROBE	Data strobe input terminal; shift register data is latched on rising edge.
13	CLOCK	Clock input terminal for data shift on rising edge.
14-17	OUT ₄₋₇	Current-sinking, open-drain DMOS output terminals.
18	SERIAL DATA OUT	CMOS serial-data output to the following shift register.
19	GROUND	Reference terminal for input voltage measurements.
20	NC	No internal connection.

NOTE — Grounds (terminals 10, 11, and 19) must be connected together externally.



8-Bit Serial-Input DMOS Power Driver


LOGIC INPUTS

DMOS POWER DRIVER OUTPUT

SERIAL DATA OUT

RECOMMENDED OPERATING CONDITIONS

over operating temperature range

Logic Supply Voltage Range, \	√ _{DD} 4.5 V to 5.5 V
High-Level Input Voltage, VIH	≥ 0.85V _{DD}
Low-level input voltage, V _{IL}	≤ 0.15V _{DD}

TRUTH TABLE

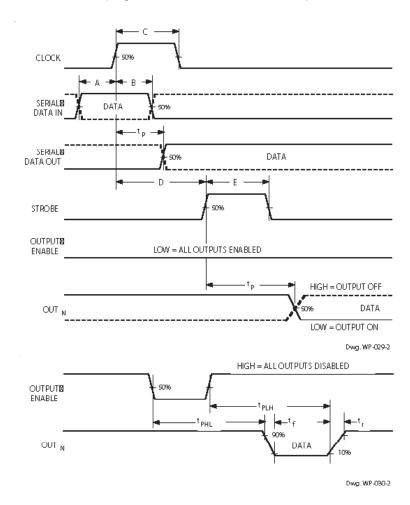
Data	Clock		hift F	Regis	ter Co	onter	nts	Serial Data			Late	ch Co	onten	ts		Output		Out	put (Conte	nts	
Input	Input		I ₁	l ₂		I ₆	I ₇	Output	Strobe	I ₀	I ₁	l ₂		I ₆	I ₇	Enable	I ₀	I ₁	l ₂		I ₆	I ₇
Н		Ι	R_0	R ₁		R_5	R_6	R ₆														
L		L	R_0	R ₁		R_5	R_6	R ₆														
Х	٦	R ₀	R ₁	R ₂		R ₆	R ₇	R ₇														
		Х	Х	Х		Х	Х	Х	_	R ₀	R ₁	R ₂		R ₆	R ₇							
		P ₀	P ₁	P ₂		P ₆	P ₇	P ₇		P ₀	P ₁	P ₂		P ₆	P ₇	L	P ₀	P ₁	P ₂		P ₆	P ₇
										Х	Х	Χ		Х	Х	Н	Н	Н	Н		Н	Н

L = Low Logic Level H = High Logic Level X = Irrelevant P = Present State R = Previous State

8-Bit Serial-Input DMOS Power Driver

ELECTRICAL CHARACTERISTICS at $T_A = +25^{\circ}C$, $V_{DD} = 5$ V, $t_{ir} = t_{if}$ 10 ns (unless otherwise specified).

			Limits			
Characteristic	Symbol	Test Conditions	Min.	Тур.	Max.	Units
Output Breakdown Voltage	$V_{(BR)DSX}$	I _O = 1 mA	50	_	_	V
Off-State Output Current	I _{DSX}	V _O = 40 V, V _{DD} = 5.5 V	_	0.1	5.0	μA
Carrone		V _O = 40 V, V _{DD} = 5.5 V, T _A = 125°C	_	0.15	8.0	μA
Static Drain-Source On-State Resistance	r _{DS(on)}	I _O = 100 mA, V _{DD} = 4.5 V	_	4.2	5.7	Ω
On-State Resistance		I _O = 100 mA, V _{DD} = 4.5 V, T _A = 125°C	_	6.8	9.5	Ω
		I _O = 350 mA, V _{DD} = 4.5 V (see note)		5.5	8.0	Ω
Nominal Output Current	I _{ON}	V _{DS(on)} = 0.5 V, T _A = 85°C	_	90	_	mA
Logic Input Current	I _{IH}	$V_I = V_{DD} = 5.5 \text{ V}$		_	1.0	μΑ
	I _{IL}	V _I = 0, V _{DD} = 5.5 V	_	_	-1.0	μΑ
SERIAL-DATA Output Voltage	V _{OH}	I _{OH} = -20 μA, V _{DD} = 4.5 V	4.4	4.49	_	V
Output voltage		I _{OH} = -4 mA, V _{DD} = 4.5 V	4.0	4.2	_	V
	V _{OL}	$I_{OL} = 20 \mu A, V_{DD} = 4.5 V$	_	0.005	0.1	V
		I _{OL} = 4 mA, V _{DD} = 4.5 V	_	0.3	0.5	V
Prop. Delay Time	t _{PLH}	I _O = 100 mA, C _L = 30 pF	_	150	_	ns
	t _{PHL}	I_{O} = 100 mA, C_{L} = 30 pF	_	90	_	ns
Output Rise Time	t _r	I _O = 100 mA, C _L = 30 pF	_	200	_	ns
Output Fall Time	t _f	I _O = 100 mA, C _L = 30 pF	_	200	_	ns
Supply Current	I _{DD(OFF)}	V _{DD} = 5.5 V, Outputs OFF	_	20	100	μΑ
	I _{DD(ON)}	V _{DD} = 5.5 V, Outputs ON	_	150	300	μΑ
	I _{DD(fclk)}	f_{clk} = 5 MHz, C_L = 30 pF, Outputs OFF	_	0.4	5.0	mA


Typical Data is at $V_{DD} = 5 \text{ V}$ and is for design information only.

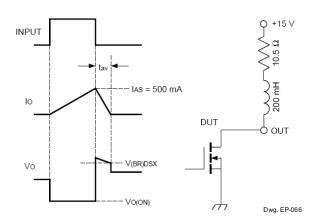
NOTE — Pulse test, duration 100 μs, duty cycle 2%.

TIMING REQUIREMENTS and SPECIFICATIONS

(Logic Levels are V_{DD} and Ground)

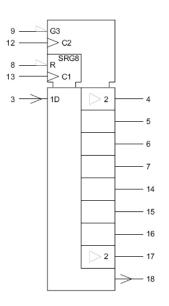
A. Data Active Time Before Clock Pulse	
(Data Set-Up Time), t _{su(D)}	20 ns
B. Data Active Time After Clock Pulse	
(Data Hold Time), t _{h(D)}	20 ns
C. Clock Pulse Width, t _{w(CLK)}	40 ns
D. Time Between Clock Activation	
and Strobe, t _{su(ST)}	50 ns
E. Strobe Pulse Width, t _{w(ST)}	50 ns
$\textbf{F. Output Enable Pulse Width, } t_{w(OE)} \$. 4.5 μs
NOTE – Timing is representative of a 12.5 MHz clock.	
NOTE – Tilling is representative of a 12.3 will clock.	
Higher speeds are attainable.	

Serial data present at the input is transferred to the shift register on the rising edge of the CLOCK input pulse. On succeeding CLOCK pulses, the registers shift data information towards the SERIAL DATA OUTPUT.


Information present at any register is transferred to the respective latch on the rising edge of the STROBE input pulse (serial-to-parallel conversion).

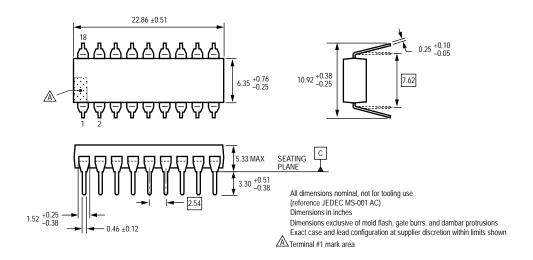
When the OUTPUT ENABLE input is high, the output source drivers are disabled (OFF). The information stored in the latches is not affected by the OUTPUT ENABLE input. With the OUTPUT ENABLE input low, the outputs are controlled by the state of their respective latches.

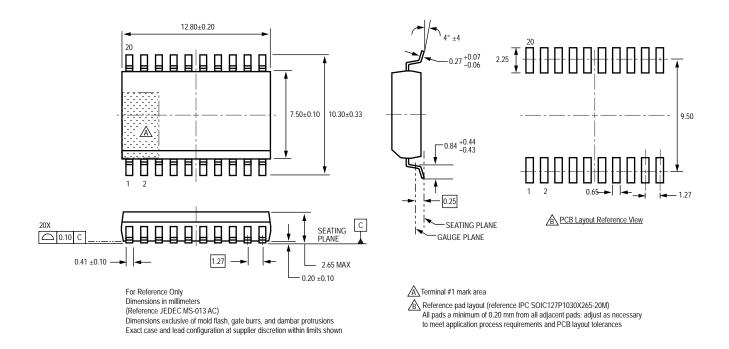
6


TEST CIRCUITS

 $E_{AS} = I_{AS} \times V_{(BR)DSX} \times t_{AV}/2$

Single-Pulse Avalanche Energy Test Circuit and Waveforms


LOGIC SYMBOL


Dwg. FP-043

8-Bit Serial-Input DMOS Power Driver

Package A, 18-Pin DIP

Package LW, 20-Pin SOICW

8-Bit Serial-Input DMOS Power Driver

Copyright ©1999-2009, Allegro MicroSystems, Inc.

The products described here are manufactured under one or more U.S. patents or U.S. patents pending.

Allegro MicroSystems, Inc. reserves the right to make, from time to time, such departures from the detail specifications as may be required to permit improvements in the performance, reliability, or manufacturability of its products. Before placing an order, the user is cautioned to verify that the information being relied upon is current.

Allegro's products are not to be used in life support devices or systems, if a failure of an Allegro product can reasonably be expected to cause the failure of that life support device or system, or to affect the safety or effectiveness of that device or system.

The information included herein is believed to be accurate and reliable. However, Allegro MicroSystems, Inc. assumes no responsibility for its use; nor for any infringement of patents or other rights of third parties which may result from its use.

For the latest version of this document, visit our website: www.allegromicro.com

9