

1

AP96DSP0100

A

PPLICATION

 N

OTE

INTRODUCTION

The Barrel Shifter Problem

In applications requiring reading and writing to memory,
cost constraints often dictate that a 16-bit DSP or 16-bit
microcontroller will be connected to 8-bit-wide memory
instead of the expected 16-bit-wide memory. Specifically,
8-bit-wide SRAM or 8-bit FLASH Memory prove to be cost
effective and are widely used instead of 16-bit-wide SRAM
or 16-bit FLASH Memory or two 8-bit-wide half-size SRAM
or two 8-bit-wide half-size FLASH Memory.

Zilog’s Z89321 and Z89371 chips (Z893X1 DSP family)
provide for the favored system architecture where a 16-bit
DSP or microcontroller connect to 8-bit memory. There is,
however, one apparent drawback: the Z893X1 does not
have a flexible Barrel Shifter. Without the Barrel Shifter,
variable-length left shift cannot be executed in one
instruction (one cycle). Each time data is stored (written) to
and later retrieved (read) from memory, a conversion from
word (16 bits) to two bytes (8 bits) and from two bytes to
word must be performed. What is needed is an 8-bit logical
left-shift operation; however, the Z893X1 DSP core does
not have this instruction. The Z893X1 performs 8 one-bit,
shift-left instructions, resulting in too many instructions and
less than optimal performance in some cases.

Improving Performance without a Barrel Shifter

This app. note describes a new system architecture that
dramatically improves the performance of reading
(conversion from bytes to word) and writing (conversion
from word to bytes) to memory for the Z893X1 DSP
family—even though it does not have a Barrel Shifter. In
this solution, one shift-left instruction replaces the need for
8 shift-left instructions, and the process of reading from the
SRAM (or FLASH) and writing to the SRAM (or FLASH)
takes only 14 instructions (cycles), instead of the usual 23
instructions—a dramatic 64 percent increase in
performance.

A Real-Life Competition Scenario

A Zilog Field Area Engineer (FAE) recently had a customer
with an application demanding very critical word-to-bytes
(writing) and bytes-to-word conversions (reading). This
particular customer was in a critical loop to determine the
performance (operation frequency) of their system, and
the customer was using this critical loop to determine DSP
performance of Zilog’s Z893X1 and the competition.

After evaluating their application and price range
requirements, the decision came down to two chips: the
Zilog Z89321 and one other chip from a competing DSP
vendor. As usual, there are advantages and
disadvantages in any competitive situation: the
disadvantage of the Zilog Z89321 chip compared to the
competitor’s chip is the lack of a Barrel Shifter. The
advantage of the Zilog chip is higher instruction rate
(operation speed)—20 MIPS for the Z89321 or 16 MIPS
for the Z89371 (OTP version of the Z89321), compared to
a much lower 12 MIPS for the low-cost version of the
competitor’s chip.

The “Straightforward” Z893X1 Solution

In the straightforward customer solution using the Z89321,
the process of reading from the SRAM and writing to the
SRAM took 23 instructions (cycles). (Refer to the “Code_1:
The Customer Original Z893X1 Assembler” code listing in
the Source Code Listings section at the conclusion of this
app. note.) Each A-D sample requires 20 passes through
this code. The Z89371 works at 16 MHz, therefore each
sample requires 28.75

µ

sec. There is a requirement of 31
kHz sampling rate; therefore, the period between
interrupts is 32.26

µ

sec. This leaves only 10.875 percent
of the time for the background process, which is not
acceptable.

I

MPROVING

 Z893X1 DSP F

AMILY

 M

EMORY

 R

EAD

AND

 W

RITE

1

A

SIMPLE

CHANGE

IN

THE

BUS

CONNECTION

CAN

DRAMATICALLY

AFFECT

THE
PERFORMANCE

OF

THE

 Z893X1 DSP

CHIP

—

EVEN

WITHOUT

A

BARREL

SHIFTER

!

https://www.application-datasheet.com/pdf/improving-z893x1-dsp-family-memory-read-and-write.html
https://www.application-datasheet.com/pdf/improving-z893x1-dsp-family-memory-read-and-write.html
https://www.application-datasheet.com/pdf/improving-z893x1-dsp-family-memory-read-and-write.html
https://www.application-datasheet.com/pdf/improving-z893x1-dsp-family-memory-read-and-write.html
https://www.application-datasheet.com/pdf/improving-z893x1-dsp-family-memory-read-and-write.html
https://www.application-datasheet.com/pdf/improving-z893x1-dsp-family-memory-read-and-write.html
https://www.application-datasheet.com/pdf/improving-z893x1-dsp-family-memory-read-and-write.html
https://www.application-datasheet.com/pdf/improving-z893x1-dsp-family-memory-read-and-write.html
https://www.application-datasheet.com/pdf/improving-z893x1-dsp-family-memory-read-and-write.html
https://www.application-datasheet.com/pdf/improving-z893x1-dsp-family-memory-read-and-write.html
https://www.application-datasheet.com/pdf/improving-z893x1-dsp-family-memory-read-and-write.html
https://www.application-datasheet.com/pdf/improving-z893x1-dsp-family-memory-read-and-write.html
https://www.application-datasheet.com/pdf/improving-z893x1-dsp-family-memory-read-and-write.html
https://www.application-datasheet.com/pdf/improving-z893x1-dsp-family-memory-read-and-write.html
https://www.application-datasheet.com/pdf/improving-z893x1-dsp-family-memory-read-and-write.html

2

Improving Z893X1 DSP Family Memory Read and Write

AP96DSP0100

In the customer solution using Zilog’s competition, the
process of reading from the SRAM and writing to the
SRAM takes only 12 instructions. Each A-D sample
requires 20 passes through this code. The low-cost
version of the chip works at 12 MHz; therefore, each
sample requires 20

µ

sec. The 31 kHz sampling rate
requirement leaves 38 percent of the time for the
background process, which is better than the
straightforward customer solution with the Z89371

Z893X1 New Solution

In the new solution suggested in this app. note, one shift-
left instruction replaces the need for 8 shift-left
instructions, and the process of reading from the SRAM (or
FLASH) and writing to the SRAM (or FLASH) takes only 14
instructions (cycles), instead of 23 instructions without
improvements. Each A-D sample requires 20 passes
through this code. The Z89371 works at 16 Mhz; therefore,
each sample requires 17.5

µ

sec. This leaves 45.75
percent

of the time for the background process—
compared to the measly 10.875 percent achieved with
straightforward Z89321 and the 38 percent posted by the
competing chip. (Refer to “Code_2: The New Z893X1
Assembler Code” in the Source Code section at the
conclusion of this app. note.)

Z893X1 Architecture Trade-offs

Many architecture trade-offs between higher performance
and lower chip price were considered during the design of
the Z893X1 core (Z89C00 or Z89S00). The Z893X1 DSP
family targets the low-cost, high-volume market, so it is
very important to keep the price low. This was
accomplished, largely, by reducing the die size.

All the blocks of the Z893X1 went through a rigorous
process of determining which specific features for Z893X1
applications were really required and which could be
eliminated. The “hard look” evaluation included:

■

32-Bit-Wide Multiplier-Accumulator Output Result

■

32-Bit-Wide Accumulator

■

Context Switching

■

Additional ALU

■

Full Hardware Looping Support

■

Full-Range Barrel Shifter

A full-range Barrel Shifter—from 16-bit left to 16-bit right—
is very expensive and consumes a great deal of silicon.
Since the Z893X1 applications are very cost sensitive, the
full-range Barrel Shifter was not supported. Instead, only
single-bit left shift, single-bit right shift and 3-bits right shift
of the multiplier output are supported.

Z893X1-Supported Shift Instructions

The Z893X1 supports the following shift instructions:

SLL– Shift Left Logical

Instruction Description: All 24 bits of the Accumulator are
shifted left through the carry bit. The Most Significant Bit
(MSB), bit 23, passes through the carry bit before being
discarded.

The Least Significant Bit (LSB), bit 0, is filled with a zero;
subsequent shifts will result in additional zeros shifted in.

SRA–Shift Right Arithmetic

Instruction Description: All 24 bits of the Accumulator are
shifted right, with sign extension, through the carry bit. The
MSB, bit 23, is replicated into vacated bits. Bit 0 is passed
through the carry before being discarded.

Sign Extension

It is also possible to shift right 3 bits with Sign Extension in
the Multiplier output (P register) by writing “1” to bit 9 of the
Status Register. This is often used to prevent overflow
conditions with the Accumulator.

Variable Length Shift

Variable Length Shift Right into P register using the
Multiplier.

https://www.application-datasheet.com/pdf/improving-z893x1-dsp-family-memory-read-and-write.html
https://www.application-datasheet.com/pdf/improving-z893x1-dsp-family-memory-read-and-write.html
https://www.application-datasheet.com/pdf/improving-z893x1-dsp-family-memory-read-and-write.html
https://www.application-datasheet.com/pdf/improving-z893x1-dsp-family-memory-read-and-write.html
https://www.application-datasheet.com/pdf/improving-z893x1-dsp-family-memory-read-and-write.html

3

Improving Z893X1 DSP Family Memory Read and Write

AP96DSP0100

Straightforward Z89371 System Architecture

As previously shown, when the straightforward (eight 1-bit
left shifts) system implementation of Z89371 is used, then
the Zilog competitor has the advantage. But when the new
system implementation of Z89371 is used (detailed in this
app. note), the Z89371 achieves better performance than
the Zilog competitor.

In the straightforward system architecture, the 8-bit data
bus of the SRAM can be connected to the low byte of EXT
bus (EXT[7:0]), or (as originally suggested by the
customer) the 8-bit data bus of the SRAM is connected to
the high byte of EXT bus shifted right by 1 (EXT[14:7]) as
shown in Figure 1, which follows. Shift right by 1 is
necessary because Multiply and Multiply-Add operations
are used in the bytes-to-word conversion program as part
of the critical word-to-bytes and bytes-to-word conversions
program that influences the application baud rate
(performance)

to combine the two bytes. Bit EXT15 is
mapped into the sign bit of the Accumulator. Therefore,

inserting data bit into this bit will corrupt the combined
result. Bits EXT15 and EXT[6:0] are connected through a
pull down to logic 0 and will be read as 0. Data written to
bits EXT15 and EXT[6:0] will be lost.

EXT1 register is used as address register for the SRAM
address. The control decoder block in Figure 1 includes
EXT1 register write decoder and 14-bit latch to latch to the
SRAM address. EXT2 is a virtual register for the low byte
of EXT data bus, and EXT3 is a virtual register for the high
byte of EXT data bus. Any write operation to EXT2 register
or EXT3 register generates write pulse on the SRAM /WR
input. Any read operation to EXT2 register or EXT3
register generates read pulse on the SRAM /RD input.
Address bit 0 of the SRAM is connected to External Data
bit 0 of the DSP (EA[0]). For each address that was written
to EXT1 register, it is possible to write or to read two bytes.
Writing or reading with EXT2 register always use the even
addresses of the SRAM, and writing or reading with EXT3
register always use the odd addresses of the SRAM.

Figure 1. System Architecture for the Straightforward Z893X1 Solution

EXT7
EXT8
EXT9
EXT10
EXT11
EXT12
EXT13
EXT14

D0
D1
D2
D3
D4
D5
D6
D7

Z893X1
DSP

A[0] A[14:1] /WR /RD

EA[0]

Address Latch
and

Control Decoder

32K x 8-Bit
SRAM

EXT1 W23 R23
EXT[15:0]

EA[2:0], RD//WR,/DS

https://www.application-datasheet.com/pdf/improving-z893x1-dsp-family-memory-read-and-write.html
https://www.application-datasheet.com/pdf/improving-z893x1-dsp-family-memory-read-and-write.html
https://www.application-datasheet.com/pdf/improving-z893x1-dsp-family-memory-read-and-write.html
https://www.application-datasheet.com/pdf/improving-z893x1-dsp-family-memory-read-and-write.html
https://www.application-datasheet.com/pdf/improving-z893x1-dsp-family-memory-read-and-write.html
https://www.application-datasheet.com/pdf/improving-z893x1-dsp-family-memory-read-and-write.html
https://www.application-datasheet.com/pdf/improving-z893x1-dsp-family-memory-read-and-write.html
https://www.application-datasheet.com/pdf/improving-z893x1-dsp-family-memory-read-and-write.html
https://www.application-datasheet.com/pdf/improving-z893x1-dsp-family-memory-read-and-write.html
https://www.application-datasheet.com/pdf/improving-z893x1-dsp-family-memory-read-and-write.html

4

Improving Z893X1 DSP Family Memory Read and Write

AP96DSP0100

Straightforward Code Explanation

The first part of the code is initialization code.

Byte_Word

The next part of the code is the bytes-to-word conversion
code. First, the current SRAM address is latched into
EXT1. Later, the LSB is being read from the SRAM, and
using the multiplier, the data is shifted 8 bits right into the
P register. The MSB is being read from the SRAM and
loaded into the A register, then the MSB and the LSB are
added (combined) together and the result is shifted left by
one. (The data read from the SRAM is shifted right by one
bit because the SRAM is connected to EXT[14:7] instead

of EXT[15:8].) The final word result is stored in the
memory.

Address_Update

The SRAM address is incremented by one for the next
cycle of bytes-to-word and word-to-bytes conversion.

Word_Bytes

The next part of the code is the word-to-bytes conversion
code. First, the word is fetched from memory, then it is
shifted right by one. Next, the MSB is written into the
SRAM. Later, the Accumulator is shifted left 8 bits, and the
LSB is written into the SRAM. The word-to-bytes
conversion is now completed.

The main problem with the straightforward solution is the
length of the word-to-bytes conversion code. The Z893X1
family does not have a flexible barrel shifter and therefore
8 single-bit, shift-left instructions are needed in the word-
to-bytes conversion code instead of one 8-bit, shift-left
instruction.

The Z893X1 Multiplier-Accumulator uses fractional
arithmetic representation of numbers; therefore, it is easy
to do any variable shift right in one instruction, but it is
impossible to do any shift left—except the one shift left—
in one instruction.

Figure 2. System Architecture for the New Z893X1 Solution

EXT0
EXT2
EXT4
EXT6
EXT8
EXT10
EXT12
EXT14

D0
D1
D2
D3
D4
D5
D6
D7

Z893X1
DSP

A[0] A[14:1] /WR /RD

EA[0]

Address Latch
and

Control Decoder

32K x 8-Bit
SRAM

EXT1 W23 R23
EXT[15:0]

EA[2:0], RD//WR,/DS

https://www.application-datasheet.com/pdf/improving-z893x1-dsp-family-memory-read-and-write.html
https://www.application-datasheet.com/pdf/improving-z893x1-dsp-family-memory-read-and-write.html
https://www.application-datasheet.com/pdf/improving-z893x1-dsp-family-memory-read-and-write.html
https://www.application-datasheet.com/pdf/improving-z893x1-dsp-family-memory-read-and-write.html
https://www.application-datasheet.com/pdf/improving-z893x1-dsp-family-memory-read-and-write.html
https://www.application-datasheet.com/pdf/improving-z893x1-dsp-family-memory-read-and-write.html
https://www.application-datasheet.com/pdf/improving-z893x1-dsp-family-memory-read-and-write.html
https://www.application-datasheet.com/pdf/improving-z893x1-dsp-family-memory-read-and-write.html
https://www.application-datasheet.com/pdf/improving-z893x1-dsp-family-memory-read-and-write.html

5

Improving Z893X1 DSP Family Memory Read and Write

AP96DSP0100

The problem is overcome by changing the way that the 8-
bit-wide memory is connected to the 16-bit-wide DSP.

Instead of connecting

the 8 memory data bus bits to
EXT[14:7], the even bits of the EXT bus bits
EXT[14,12,10,8,6,4,2,0] are connected. This special way
of connection enables switching between the two bytes—
with 1-bit shift right or with 1-bit shift left. All the odd bits
EXT[15,13,11,9,7,5,3,1] are connected through a pull
down to logic 0 and will be read as 0. Data written to bits
EXT[15,13,11,9,7,5,3,1] will be lost.

The other logic is the same as in the original design: EXT1
register is used as address register for the SRAM address.
The control decoder block in Figure 2 includes EXT1
register write decoder and 14-bit latch to latch to the SRAM
address. EXT2 is a virtual register for the low byte of EXT
data bus, and EXT3 is a virtual register for the high byte of
EXT data bus. Any write operation to EXT2 register or
EXT3 register generates write pulse on the SRAM /WR
input. Any read operation to EXT2 register or EXT3
register generates read pulse on the SRAM /RD input.
Address bit 0 of the SRAM is connected to External
Address bit 0 of the DSP (EA[0]); therefore, for each
address that was written to EXT1 register, it possible to
write or to read two bytes. Writing or reading with EXT2
register always use the even addresses of the SRAM, and
writing or reading with EXT3 register always use the odd
addresses of the SRAM.

New System Architecture Code Explanation

The first part of the code is initialization code.

Byte_Word

The next part of the code is the bytes-to-word conversion
code. First, the current SRAM address is latched into
EXT1. Later, the odd bits are read from the SRAM. Next,
they are shifted left to their position, then the even bits are
read from the SRAM and combined (OR operation) with
the odd bits in the Accumulator. The word result is then
stored into the table in the memory.

Address_Update

The SRAM address is incremented by one for next cycle
of bytes-to-word and word-to-bytes conversion.

Word_Bytes

The next part of the code is the word-to-bytes conversion
code. First, the word is fetched from memory, then the
even bits are written into the SRAM. Later, the odd bits are
shifted one bit right, and the odd bits are written into the
SRAM. The word-to-bytes conversion is now completed.

Conclusion

Lacking a full-range barrel shifter is not a fatal blow to
Z893X1 applications. Not having a very expensive and
high-consumption barrel shifter can be overcome by
changing the system architecture connection of the 8-bit-
wide memory to the 16-bit data bus of the Z893X1 DSP. In
the actual case described in this app. note, a simple
modification of the bus connection improved the
performance of the Z893X1 DSP by a whopping 64
percent. The simple change in bus connection also
enabled the Z89321/Z89371 to win the competition.

https://www.application-datasheet.com/pdf/improving-z893x1-dsp-family-memory-read-and-write.html
https://www.application-datasheet.com/pdf/improving-z893x1-dsp-family-memory-read-and-write.html
https://www.application-datasheet.com/pdf/improving-z893x1-dsp-family-memory-read-and-write.html
https://www.application-datasheet.com/pdf/improving-z893x1-dsp-family-memory-read-and-write.html
https://www.application-datasheet.com/pdf/improving-z893x1-dsp-family-memory-read-and-write.html
https://www.application-datasheet.com/pdf/improving-z893x1-dsp-family-memory-read-and-write.html
https://www.application-datasheet.com/pdf/improving-z893x1-dsp-family-memory-read-and-write.html
https://www.application-datasheet.com/pdf/improving-z893x1-dsp-family-memory-read-and-write.html
https://www.application-datasheet.com/pdf/improving-z893x1-dsp-family-memory-read-and-write.html
https://www.application-datasheet.com/pdf/improving-z893x1-dsp-family-memory-read-and-write.html
https://www.application-datasheet.com/pdf/improving-z893x1-dsp-family-memory-read-and-write.html
https://www.application-datasheet.com/pdf/improving-z893x1-dsp-family-memory-read-and-write.html
https://www.application-datasheet.com/pdf/improving-z893x1-dsp-family-memory-read-and-write.html
https://www.application-datasheet.com/pdf/improving-z893x1-dsp-family-memory-read-and-write.html

6

Improving Z893X1 DSP Family Memory Read and Write

AP96DSP0100

SOURCE CODE

Code_1: The Customer Original Z893X1 Assembler Code

p0:0 = Delay Length Table

p1:0 = I/O Table

d0:0 = External Buffer Pointer

Segment b

NumberDelays EQU12

DelayTable: ds NumberDelays+1

DelayIO: ds 2*NumberDelays

DelayPointer: ds 1

One: ds 1

Shiftright8: ds 1

segment code

org %0

ld p0:0,#DelayTable

ld p1:0,#DelayIO

ld p2:0,#Shiftright8

ld @p2:0,#%80 ;shift right 8 places

ld d0:0,#%8000 ;Delay Starting Address

ld a,#1

ld One,a

Bytes_Word:

ld EXT1,d0:0 ;output delay end address

mld EXT2,@p2:0,on ;fetch LSB and shift right 8 places

ld a,EXT3 ;fetch MSB

mpya @p0:1,@p0:0 ;combine

 sll a ;one final shift

ld @p1:0+,a ;store result into table

7

Improving Z893X1 DSP Family Memory Read and Write

AP96DSP0100

Address_update:

ld a,d0:0 ;fetch buffer address

add a,@p0:0+ ;add in delay length to get to start of buffer

ld EXT1,a ;output start address

add a,one ;compute end address for next buffer

ld d0:0,a ;save updated address

Word_Bytes:

ld a,@p0:0+ ;fetch delay in value

sra a

ld EXT3,a ;send out MSB

sll a

sll a

sll a

sll a

sll a

sll a

sll a

sll a

ld EXT2,a

end

8

Improving Z893X1 DSP Family Memory Read and Write

AP96DSP0100

Code_2: The New Z893X1 Assembler Code

p0:0 = Delay Length Table

p1:0 = I/O Table

d0:0 = External Buffer Pointer

Segment b_new

NumberDelays EQU 12

DelayTable: ds NumberDelays+1

DelayIO: ds 2*NumberDelays

DelayPointer: ds 1

One: ds 1

Shiftright8: ds 1

segment code

org %0

ld p0:0,#DelayTable

ld p1:0,#DelayIO

ld p2:0,#Shiftright8

ld @p2:0,#%80 ;shift right 8 places

ld d0:0,#%8000 ;Delay Starting Address

ld a,#1

ld One,a

Bytes_Word:

ld EXT1,d0:0 ;output delay end address

ld a,EXT3 ;reading the odd bits

sll a ;shifting the odd bits to their position

or a,EXT2 ;reading the even bits and combining the two bytes

ld @p1:0+,a ;store result into table

Address_update:

ld a,d0:0 ;fetch buffer address

add a,@p0:0+ ;add in delay length to get to start of buffer

ld EXT1,a ;output start address

add a,one ;compute end address for next buffer

ld d0:0,a ;save updated address

Word_Bytes:

ld a,@p0:0+ ;fetch delay in value

ld EXT2,a ;writing the even bits

sra a ;shifting the odd bits to the even bits

ld EXT3,a ;writing the odd bits

end

	Main Menu
	Previous Menu
	8-Bit MCU Products Menu
	DSP Products Menu
	Communications Controllers Products Menu

